文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

外部验证心肌缺血损伤指数机器学习算法在早期诊断心肌梗死中的应用:一项多中心队列研究。

External validation of the myocardial-ischaemic-injury-index machine learning algorithm for the early diagnosis of myocardial infarction: a multicentre cohort study.

机构信息

Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Cardiology, University Hospital Basel, University of Basel, Basel, Switzerland; GREAT Association, Rome, Italy.

Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Cardiology, University Hospital Basel, University of Basel, Basel, Switzerland; GREAT Association, Rome, Italy; BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.

出版信息

Lancet Digit Health. 2024 Jul;6(7):e480-e488. doi: 10.1016/S2589-7500(24)00088-8.


DOI:10.1016/S2589-7500(24)00088-8
PMID:38906613
Abstract

BACKGROUND: The myocardial-ischaemic-injury-index (MI) is a novel machine learning algorithm for the early diagnosis of type 1 non-ST-segment elevation myocardial infarction (NSTEMI). The performance of MI, both when using early serial blood draws (eg, at 1 h or 2 h) and in direct comparison with guideline-recommended algorithms, remains unknown. Our aim was to externally validate MI and compare its performance with that of the European Society of Cardiology (ESC) 0/1h-algorithm. METHODS: In this secondary analysis of a multicentre international diagnostic cohort study, adult patients (age >18 years) presenting to the emergency department with symptoms suggestive of myocardial infarction were prospectively enrolled from April 21, 2006, to Feb 27, 2019 in 12 centres from five European countries (Switzerland, Spain, Italy, Poland, and Czech Republic). Patients were excluded if they presented with ST-segment-elevation myocardial infarction, did not have at least two serial high-sensitivity cardiac troponin I (hs-cTnI) measurements, or if the final diagnosis remained unclear. The final diagnosis was centrally adjudicated by two independent cardiologists using all available medical records, including serial hs-cTnI measurements and cardiac imaging. The primary outcome was type 1 NSTEMI. The performance of MI was directly compared with that of the ESC 0/1h-algorithm. FINDINGS: Among 6487 patients, (median age 61·0 years [IQR 49·0-73·0]; 2122 [33%] female and 4365 [67%] male), 882 (13·6%) patients had type 1 NSTEMI. The median time difference between the first and second hs-cTnI measurement was 60·0 mins (IQR 57·0-70·0). MI performance was very good, with an area under the receiver-operating-characteristic curve of 0·961 (95% CI 0·957 to 0·965) and a good overall calibration (intercept -0·09 [-0·2 to 0·02]; slope 1·02 [0·97 to 1·08]). The originally defined MI score of less than 1·6 identified 4186 (64·5%) patients as low probability of having a type 1 NSTEMI (sensitivity 99·1% [95% CI 98·2 to 99·5]; negative predictive value [NPV] 99·8% [95% CI 99·6 to 99·9]) and an MI score of 49·7 or more identified 915 (14·1%) patients as high probability of having a type 1 NSTEMI (specificity 95·0% [94·3 to 95·5]; positive predictive value [PPV] 69·1% [66·0-72·0]). The sensitivity and NPV of the ESC 0/1h-algorithm were higher than that of MI (difference for sensitivity 0·88% [0·19 to 1·60], p=0·0082; difference for NPV 0·18% [0·05 to 0·32], p=0·016), and the rule-out efficacy was higher for MI (11% difference, p<0·0001). Specificity and PPV for MI were superior (difference for specificity 3·80% [3·24 to 4·36], p<0·0001; difference for PPV 7·84% [5·86 to 9·97], p<0·0001), and the rule-in efficacy was higher for the ESC 0/1h-algorithm (5·4% difference, p<0·0001). INTERPRETATION: MI performs very well in diagnosing type 1 NSTEMI, demonstrating comparability to the ESC 0/1h-algorithm in an emergency department setting when using early serial blood draws. FUNDING: Swiss National Science Foundation, Swiss Heart Foundation, the EU, the University Hospital Basel, the University of Basel, Abbott, Beckman Coulter, Roche, Idorsia, Ortho Clinical Diagnostics, Quidel, Siemens, and Singulex.

摘要

背景:心肌缺血损伤指数(MI)是一种新的机器学习算法,用于早期诊断 1 型非 ST 段抬高型心肌梗死(NSTEMI)。MI 的性能,无论是使用早期连续采血(例如 1 小时或 2 小时)还是与指南推荐的算法直接比较,目前尚不清楚。我们的目的是对外验证 MI,并将其与欧洲心脏病学会(ESC)0/1h 算法进行比较。

方法:这是一项多中心国际诊断队列研究的二次分析,2006 年 4 月 21 日至 2019 年 2 月 27 日期间,来自瑞士、西班牙、意大利、波兰和捷克共和国的 5 个欧洲国家的 12 个中心前瞻性纳入了因疑似心肌梗死而就诊于急诊科的成年患者(年龄>18 岁)。如果患者出现 ST 段抬高型心肌梗死、没有至少两次连续高敏心肌肌钙蛋白 I(hs-cTnI)测量,或最终诊断仍不明确,则排除在外。最终诊断由两位独立的心脏病专家根据所有可用的病历进行中心裁决,包括连续 hs-cTnI 测量和心脏成像。主要结局为 1 型 NSTEMI。MI 的性能与 ESC 0/1h 算法直接比较。

结果:在 6487 例患者中(中位年龄 61.0 岁[IQR 49.0-73.0];女性 2122 例[33%],男性 4365 例[67%]),882 例(13.6%)患者患有 1 型 NSTEMI。第一次和第二次 hs-cTnI 测量之间的中位时间差为 60.0 分钟(IQR 57.0-70.0)。MI 的性能非常好,受试者工作特征曲线下面积为 0.961(95%CI 0.957-0.965),整体校准良好(截距-0.09[-0.2 至 0.02];斜率 1.02[0.97 至 1.08])。最初定义的 MI 评分<1.6 时,4186 例(64.5%)患者被认为发生 1 型 NSTEMI 的可能性较低(敏感性 99.1%[98.2%至 99.5%];阴性预测值[NPV]99.8%[99.6%至 99.9%]),而 MI 评分 49.7 或更高时,915 例(14.1%)患者发生 1 型 NSTEMI 的可能性较高(特异性 95.0%[94.3%至 95.5%];阳性预测值[PPV]69.1%[66.0%至 72.0%])。ESC 0/1h 算法的敏感性和 NPV 高于 MI(敏感性差异 0.88%[0.19%至 1.60%],p=0.0082;NPV 差异 0.18%[0.05%至 0.32%],p=0.016),MI 的排除效能更高(11%的差异,p<0.0001)。MI 的特异性和 PPV 更好(特异性差异 3.80%[3.24%至 4.36%],p<0.0001;PPV 差异 7.84%[5.86%至 9.97%],p<0.0001),ESC 0/1h 算法的纳入效能更高(5.4%的差异,p<0.0001)。

结论:MI 在诊断 1 型 NSTEMI 方面表现非常出色,当使用早期连续采血时,在急诊科环境下与 ESC 0/1h 算法具有可比性。

资金:瑞士国家科学基金会、瑞士心脏基金会、欧盟、巴塞尔大学附属医院、巴塞尔大学、雅培、贝克曼库尔特、罗氏、Idorsia、Ortho 临床诊断、Quidel、西门子和 Singulex。

相似文献

[1]
External validation of the myocardial-ischaemic-injury-index machine learning algorithm for the early diagnosis of myocardial infarction: a multicentre cohort study.

Lancet Digit Health. 2024-7

[2]
Diagnostic accuracy of a machine learning algorithm using point-of-care high-sensitivity cardiac troponin I for rapid rule-out of myocardial infarction: a retrospective study.

Lancet Digit Health. 2024-10

[3]
Clinical derivation and data simulated validation of rule-out and rule-in algorithms for the Siemens Atellica IM high-sensitivity cardiac troponin I assay.

Eur Heart J Acute Cardiovasc Care. 2025-3-22

[4]
External validation of the 0/1h-algorithm and derivation of a 0/2h-algorithm using a new point-of-care Hs-cTnI assay.

Am Heart J. 2024-2

[5]
Prospective Validation of the 0/1-h Algorithm for Early Diagnosis of Myocardial Infarction.

J Am Coll Cardiol. 2018-8-7

[6]
A 0/1h-algorithm using cardiac myosin-binding protein C for early diagnosis of myocardial infarction.

Eur Heart J Acute Cardiovasc Care. 2022-6-7

[7]
Novel Criteria for the Observe-Zone of the ESC 0/1h-hs-cTnT Algorithm.

Circulation. 2021-9-7

[8]
Adding stress biomarkers to high-sensitivity cardiac troponin for rapid non-ST-elevation myocardial infarction rule-out protocols.

Eur Heart J Acute Cardiovasc Care. 2022-3-16

[9]
Early Diagnosis of Myocardial Infarction With Point-of-Care High-Sensitivity Cardiac Troponin I.

J Am Coll Cardiol. 2020-3-17

[10]
Validation of the myocardial-ischaemic-injury-index machine learning algorithm to guide the diagnosis of myocardial infarction in a heterogenous population: a prespecified exploratory analysis.

Lancet Digit Health. 2022-5

引用本文的文献

[1]
Biosynthetic gas vesicles as a novel ultrasound contrast agent for diagnosing and treating myocardial infarction.

Theranostics. 2025-7-28

[2]
Application of non-invasive imaging in myocardial infarction: a bibliometric analysis from January 2003 to December 2022.

Quant Imaging Med Surg. 2025-7-1

[3]
Advancements and challenges in high-sensitivity cardiac troponin assays: diagnostic, pathophysiological, and clinical perspectives.

Clin Chem Lab Med. 2025-2-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索