作为磁通通用感应传感器的同轴拾波线圈组件:零阶、一阶和二阶导数配置的数学建模。
Assemblies of Coaxial Pick-Up Coils as Generic Inductive Sensors of Magnetic Flux: Mathematical Modeling of Zero, First and Second Derivative Configurations.
作者信息
Moraitis Petros, Stamopoulos Dimosthenis
机构信息
Department of Physics, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece.
出版信息
Sensors (Basel). 2024 Jun 11;24(12):3790. doi: 10.3390/s24123790.
Coils are one of the basic elements employed in devices. They are versatile, in terms of both design and manufacturing, according to the desired inductive specifications. An important characteristic of coils is their bidirectional action; they can both produce and sense magnetic fields. Referring to sensing, coils have the unique property to inductively translate the temporal variation of magnetic flux into an AC voltage signal. Due to this property, they are massively used in many areas of science and engineering; among other disciplines, coils are employed in physics/materials science, geophysics, industry, aerospace and healthcare. Here, we present detailed and exact mathematical modeling of the sensing ability of the three most basic scalar assemblies of coaxial pick-up coils (PUCs): in the so-called zero derivative configuration (ZDC), having a single PUC; the first derivative configuration (FDC), having two PUCs; and second derivative configuration (SDC), having four PUCs. These three basic assemblies are mathematically modeled for a reference case of physics; we tackle the AC voltage signal, V (t), induced at the output of the PUCs by the temporal variation of the magnetic flux, Φ(t), originating from the time-varying moment, (t), of an ideal magnetic dipole. Detailed and exact mathematical modeling, with only minor assumptions/approximations, enabled us to obtain the so-called sensing function, F, for all three cases: ZDC, FDC and SDC. By definition, the sensing function, FSF, quantifies the ability of an assembly of PUCs to translate the time-varying moment, (t), into an AC signal, V (t). Importantly, the FSF is obtained in a closed-form expression for all three cases, ZDC, FDC and SDC, that depends on the realistic, macroscopic characteristics of each PUC (i.e., number of turns, length, inner and outer radius) and of the entire assembly in general (i.e., relative position of PUCs). The mathematical methodology presented here is complete and flexible so that it can be easily utilized in many disciplines of science and engineering.
线圈是设备中使用的基本元件之一。根据所需的电感规格,它们在设计和制造方面都具有通用性。线圈的一个重要特性是其双向作用;它们既能产生磁场,也能感应磁场。在感应方面,线圈具有独特的特性,能够将磁通量的时间变化感应转换为交流电压信号。由于这一特性,它们在许多科学和工程领域得到了大量应用;在其他学科中,线圈被用于物理/材料科学、地球物理学、工业、航空航天和医疗保健等领域。在这里,我们给出了同轴拾波线圈(PUC)三种最基本标量组件感应能力的详细且精确的数学模型:在所谓的零导数配置(ZDC)中,有一个PUC;一阶导数配置(FDC),有两个PUC;二阶导数配置(SDC),有四个PUC。这三种基本组件针对一个物理参考案例进行了数学建模;我们处理由理想磁偶极子随时间变化的矩(\mu(t))产生的磁通量(\varPhi(t))的时间变化在PUC输出端感应出的交流电压信号(V(t))。详细且精确的数学建模,仅做了少量假设/近似,使我们能够针对所有三种情况:ZDC、FDC和SDC,得到所谓的感应函数(F)。根据定义,感应函数(FSF)量化了PUC组件将随时间变化的矩(\mu(t))转换为交流信号(V(t))的能力。重要的是,对于所有三种情况:ZDC、FDC和SDC,FSF都是以封闭形式表达式获得的,它取决于每个PUC(即匝数、长度、内半径和外半径)以及整个组件一般的实际宏观特性(即PUC的相对位置)。这里提出的数学方法完整且灵活,因此可以很容易地应用于许多科学和工程学科。
相似文献
PLoS One. 2018-5-10
Sensors (Basel). 2021-12-28
Sensors (Basel). 2022-12-13
Magn Reson Imaging. 2024-7
引用本文的文献
本文引用的文献
Sensors (Basel). 2024-4-15
Sensors (Basel). 2022-12-13
Sensors (Basel). 2022-11-17
Micromachines (Basel). 2021-1-12