文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于锁相值功能连接矩阵和 CNN-LSTM 的视觉诱导运动病分类。

Classification of Visually Induced Motion Sickness Based on Phase-Locked Value Functional Connectivity Matrix and CNN-LSTM.

机构信息

School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China.

Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China.

出版信息

Sensors (Basel). 2024 Jun 18;24(12):3936. doi: 10.3390/s24123936.


DOI:10.3390/s24123936
PMID:38931723
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11207687/
Abstract

To effectively detect motion sickness induced by virtual reality environments, we developed a classification model specifically designed for visually induced motion sickness, employing a phase-locked value (PLV) functional connectivity matrix and a CNN-LSTM architecture. This model addresses the shortcomings of traditional machine learning algorithms, particularly their limited capability in handling nonlinear data. We constructed PLV-based functional connectivity matrices and network topology maps across six different frequency bands using EEG data from 25 participants. Our analysis indicated that visually induced motion sickness significantly alters the synchronization patterns in the EEG, especially affecting the frontal and temporal lobes. The functional connectivity matrix served as the input for our CNN-LSTM model, which was used to classify states of visually induced motion sickness. The model demonstrated superior performance over other methods, achieving the highest classification accuracy in the gamma frequency band. Specifically, it reached a maximum average accuracy of 99.56% in binary classification and 86.94% in ternary classification. These results underscore the model's enhanced classification effectiveness and stability, making it a valuable tool for aiding in the diagnosis of motion sickness.

摘要

为了有效检测虚拟现实环境引起的晕动病,我们开发了一种专门针对视觉诱发晕动病的分类模型,该模型采用锁相值(PLV)功能连接矩阵和 CNN-LSTM 架构。该模型解决了传统机器学习算法的缺点,特别是它们在处理非线性数据方面的能力有限。我们使用来自 25 名参与者的 EEG 数据构建了基于 PLV 的功能连接矩阵和跨六个不同频段的网络拓扑图。我们的分析表明,视觉诱发晕动病显著改变了 EEG 中的同步模式,特别是影响了额叶和颞叶。功能连接矩阵作为我们的 CNN-LSTM 模型的输入,该模型用于对视觉诱发晕动病的状态进行分类。该模型在其他方法中表现出优越的性能,在伽马频带中达到了最高的分类准确性。具体来说,在二进制分类中达到了最高平均准确率 99.56%,在三元分类中达到了 86.94%。这些结果突出了该模型增强的分类效果和稳定性,使其成为辅助晕动病诊断的有价值工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05dd/11207687/da8600bf822e/sensors-24-03936-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05dd/11207687/dd136ea1bb64/sensors-24-03936-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05dd/11207687/319ce39f20b6/sensors-24-03936-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05dd/11207687/8140abc751cd/sensors-24-03936-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05dd/11207687/47d7af5faf52/sensors-24-03936-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05dd/11207687/769d84743cd2/sensors-24-03936-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05dd/11207687/5b3c9535ea5e/sensors-24-03936-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05dd/11207687/ac26c3472a09/sensors-24-03936-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05dd/11207687/fd73080b32ea/sensors-24-03936-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05dd/11207687/da8600bf822e/sensors-24-03936-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05dd/11207687/dd136ea1bb64/sensors-24-03936-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05dd/11207687/319ce39f20b6/sensors-24-03936-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05dd/11207687/8140abc751cd/sensors-24-03936-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05dd/11207687/47d7af5faf52/sensors-24-03936-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05dd/11207687/769d84743cd2/sensors-24-03936-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05dd/11207687/5b3c9535ea5e/sensors-24-03936-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05dd/11207687/ac26c3472a09/sensors-24-03936-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05dd/11207687/fd73080b32ea/sensors-24-03936-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05dd/11207687/da8600bf822e/sensors-24-03936-g009.jpg

相似文献

[1]
Classification of Visually Induced Motion Sickness Based on Phase-Locked Value Functional Connectivity Matrix and CNN-LSTM.

Sensors (Basel). 2024-6-18

[2]
EEG classification model for virtual reality motion sickness based on multi-scale CNN feature correlation.

Comput Methods Programs Biomed. 2024-6

[3]
Subject-Specific Cognitive Workload Classification Using EEG-Based Functional Connectivity and Deep Learning.

Sensors (Basel). 2021-10-9

[4]
Feature extraction method of EEG based on wavelet packet reconstruction and deep learning model of VR motion sickness feature classification and prediction.

PLoS One. 2024

[5]
Autism spectrum disorder diagnosis with EEG signals using time series maps of brain functional connectivity and a combined CNN-LSTM model.

Comput Methods Programs Biomed. 2024-6

[6]
Motion sickness-susceptible participants exposed to coherent rotating dot patterns show excessive N2 amplitudes and impaired theta-band phase synchronization.

Neuroimage. 2019-7-18

[7]
Detection of virtual reality motion sickness based on EEG using asymmetry of entropy and cross-frequency coupling.

Physiol Behav. 2024-10-1

[8]
Research on two-class and four-class action recognition based on EEG signals.

Math Biosci Eng. 2023-4-6

[9]
Using Nonlinear Kinematic Parameters as a Means of Predicting Motion Sickness in Real-Time in Virtual Environments.

Hum Factors. 2023-12

[10]
EEG-based analysis of various sensory stimulation effects to reduce visually induced motion sickness in virtual reality.

Sci Rep. 2022-10-27

引用本文的文献

[1]
Predictive analytics of complex healthcare systems using deep learning based disease diagnosis model.

Sci Rep. 2024-11-11

本文引用的文献

[1]
Quantitative High Density EEG Brain Connectivity Evaluation in Parkinson's Disease: The Phase Locking Value (PLV).

J Clin Med. 2023-2-11

[2]
Electroencephalogram microstates and functional connectivity of cybersickness.

Front Hum Neurosci. 2022-8-22

[3]
EEG Channel Correlation Based Model for Emotion Recognition.

Comput Biol Med. 2021-9

[4]
Electrogastrography in Autonomous Vehicles-An Objective Method for Assessment of Motion Sickness in Simulated Driving Environments.

Sensors (Basel). 2021-1-14

[5]
Test-retest reliability of the virtual reality sickness evaluation using electroencephalography (EEG).

Neurosci Lett. 2021-1-19

[6]
Temporal Dynamics of Visually Induced Motion Perception and Neural Evidence of Alterations in the Motion Perception Process in an Immersive Virtual Reality Environment.

Front Neurosci. 2020-11-19

[7]
Objective and subjective responses to motion sickness: the group and the individual.

Exp Brain Res. 2021-2

[8]
VR motion sickness recognition by using EEG rhythm energy ratio based on wavelet packet transform.

Comput Methods Programs Biomed. 2020-5

[9]
Postural instability in an immersive Virtual Reality adapts with repetition and includes directional and gender specific effects.

Sci Rep. 2019-2-28

[10]
Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment.

Appl Ergon. 2018-1-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索