Lin Xiu, Hu Fan-Sheng, Li Qi-Yuan, Xu Dong, Xu Yu-Shuai, Zhang Zhao, Chen Jie-Sheng, Li Xin-Hao
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
J Am Chem Soc. 2024 Jul 10;146(27):18451-18458. doi: 10.1021/jacs.4c03893. Epub 2024 Jun 27.
Electrocatalytic semihydrogenation of alkynols presents a sustainable alternative to conventional thermal methodologies for the high-value production of alkenols. The design of efficient catalysts with superior catalytic and energy efficiency for semihydrogenation poses a significant challenge. Here, we present the application of an electron-divergent CuPd alloy-based heterojunction in promoting the electrocatalytic semihydrogenation of alkynols to alkenols using water as the proton source. The tunable electron divergence of Cu and Pd, modulated by rectifying contact with nitrogen-rich carbons, enables the concerted binding of active H species from the Volmer step of water dissociation and the C≡C bond of alkynols on Pd sites. Simultaneously, the pronounced electron divergence of CuPd facilitates the universal adsorption of OH species from the Volmer step and alkynols on the Cu sites. The electron-divergent dual-center substantially boosts water dissociation and inhibition of completing hydrogen evolution to give a turnover frequency of 2412 h, outperforming the reported electrocatalysts' value of 7.3. Moreover, the continuous production of alkenols at industrial-related current density (-200 mA cm) over the efficient and durable CuPd-based electrolyzer could achieve a cathodic energy efficiency of 45 mol kW·h, 1.7 times the bench-marked reactors, promising great potential for sustainable industrial synthesis.
炔醇的电催化半氢化反应为高价值生产烯醇提供了一种可持续的替代传统热方法。设计具有卓越催化和能量效率的高效半氢化催化剂面临重大挑战。在此,我们展示了一种基于电子发散的铜钯合金异质结在促进以水为质子源将炔醇电催化半氢化为烯醇方面的应用。通过与富氮碳的整流接触来调节铜和钯的可调电子发散,能够使来自水电离的Volmer步骤的活性氢物种与炔醇的C≡C键在钯位点上协同结合。同时,铜钯显著的电子发散促进了来自Volmer步骤的OH物种和炔醇在铜位点上的普遍吸附。这种电子发散的双中心极大地促进了水电离并抑制了完全析氢,周转频率达到2412 h,超过了已报道电催化剂7.3的数值。此外,在高效且耐用的基于铜钯的电解槽上,在与工业相关的电流密度(-200 mA cm)下持续生产烯醇,阴极能量效率可达45 mol kW·h,是基准反应器的1.7倍,在可持续工业合成方面具有巨大潜力。