Department of Chemical Engineering, Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, NY, United States; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, United States.
Department of Chemical Engineering, Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, NY, United States; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, United States; Department of Genetics and Development, Columbia Irving Medical Center, New York, NY, United States.
Curr Top Dev Biol. 2024;160:31-64. doi: 10.1016/bs.ctdb.2024.05.001. Epub 2024 Jun 21.
Biomechanics in embryogenesis is a dynamic field intertwining the physical forces and biological processes that shape the first days of a mammalian embryo. From the first cell fate bifurcation during blastulation to the complex symmetry breaking and tissue remodeling in gastrulation, mechanical cues appear critical in cell fate decisions and tissue patterning. Recent strides in mouse and human embryo culture, stem cell modeling of mammalian embryos, and biomaterial design have shed light on the role of cellular forces, cell polarization, and the extracellular matrix in influencing cell differentiation and morphogenesis. This chapter highlights the essential functions of biophysical mechanisms in blastocyst formation, embryo implantation, and early gastrulation where the interplay between the cytoskeleton and extracellular matrix stiffness orchestrates the intricacies of embryogenesis and placenta specification. The advancement of in vitro models like blastoids, gastruloids, and other types of embryoids, has begun to faithfully recapitulate human development stages, offering new avenues for exploring the biophysical underpinnings of early development. The integration of synthetic biology and advanced biomaterials is enhancing the precision with which we can mimic and study these processes. Looking ahead, we emphasize the potential of CRISPR-mediated genomic perturbations coupled with live imaging to uncover new mechanosensitive pathways and the application of engineered biomaterials to fine-tune the mechanical conditions conducive to embryonic development. This synthesis not only bridges the gap between experimental models and in vivo conditions to advancing fundamental developmental biology of mammalian embryogenesis, but also sets the stage for leveraging biomechanical insights to inform regenerative medicine.
胚胎发生中的生物力学是一个动态的领域,它交织了物理力量和生物过程,这些力量和过程塑造了哺乳动物胚胎的最初几天。从胚胎细胞分裂期间的第一次细胞命运分岔,到原肠胚形成过程中的复杂对称破缺和组织重塑,力学线索在细胞命运决定和组织模式形成中似乎起着关键作用。最近在小鼠和人类胚胎培养、哺乳动物胚胎干细胞建模以及生物材料设计方面的进展,揭示了细胞力、细胞极化和细胞外基质在影响细胞分化和形态发生中的重要作用。本章重点介绍了生物物理机制在囊胚形成、胚胎着床和早期原肠胚形成中的基本功能,其中细胞骨架和细胞外基质硬度之间的相互作用协调了胚胎发生和胎盘特化的复杂性。像胚泡样体、原肠胚样体和其他类型的类胚体等体外模型的发展,已经开始忠实地再现人类发育阶段,为探索早期发育的生物物理基础提供了新的途径。合成生物学和先进生物材料的整合正在提高我们模拟和研究这些过程的精确性。展望未来,我们强调 CRISPR 介导的基因组扰动与实时成像相结合的潜力,以揭示新的机械敏感途径,以及工程生物材料的应用,以微调有利于胚胎发育的机械条件。这种综合不仅弥合了实验模型和体内条件之间的差距,推进了哺乳动物胚胎发生的基础发育生物学,而且为利用生物力学见解为再生医学提供信息奠定了基础。