Suppr超能文献

数字时代中国技能人才生态系统的评价与影响趋势研究——基于神经网络模型和 PVAR 模型的分析。

Research on the evaluation and impact trends of China's skill talent ecosystem in the digital era - An analysis based on neural network models and PVAR models.

机构信息

School of Public Administration, Hebei University of Economics and Business, Shijiazhuang, Hebei, China.

School of Management, Xi'an Jiaotong University, Xi'an, Shanxi, China.

出版信息

PLoS One. 2024 Jun 28;19(6):e0302909. doi: 10.1371/journal.pone.0302909. eCollection 2024.

Abstract

This study develops a "Skill Talent Ecological Evaluation Model" across cultivation, potential energy, kinetic energy, innovation, and service and support ecologies. AHP-entropy determines indicator weights, Hopfield neural network assesses talent ecology levels, and the PVAR model analyzes digital transformation effects. Findings reveal: Cultivation ecology rates A, potential ecology rates B+, kinetic ecology rates B-, service and support ecology rates B-, and innovation ecology rates C. Digital transformation spurs skill demand, impacting talent and economic contributions. Kinetic ecology sees increased demand, potentially impacting traditional industries positively. Innovation ecology necessitates continuous skill learning. Service and support ecology witnesses growth in digital entrepreneurship, requiring policy incentives and incubation center support.

摘要

本研究构建了一个涵盖培养、潜能、动能、创新和服务与支持生态的“技能人才生态评价模型”。AHP-熵法确定指标权重,Hopfield 神经网络评估人才生态水平,PVAR 模型分析数字转型效果。研究结果表明:培养生态得分为 A,潜能生态得分为 B+,动能生态得分为 B-,服务与支持生态得分为 B-,创新生态得分为 C。数字转型刺激技能需求,影响人才和经济贡献。动能生态需求增加,可能对传统产业产生积极影响。创新生态需要不断学习技能。服务与支持生态见证数字创业的增长,需要政策激励和孵化中心的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caa4/11213331/ab027cfa0add/pone.0302909.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验