Miotk Robert, Hrycak Bartosz, Czylkowski Dariusz, Jasiński Mariusz, Dors Mirosław, Mizeraczyk Jerzy
Institute of Fluid Flow Machinery, Polish Academy of Sciences, 80-231, Gdańsk, Poland, Fiszera 14.
Department of Marine Electronics, Gdynia Maritime University, 81-225, Gdynia, Poland, Morska 81-87.
Sci Rep. 2024 Jun 28;14(1):14959. doi: 10.1038/s41598-024-65874-9.
This work presents experimental results on the energy efficiency in hydrogen production using atmospheric microwave plasma (915 MHz) through steam reforming of ethanol. Ethanol was chosen as a liquid hydrogen carrier due to its high hydrogen atom content, low cost, and wide availability. The experimental work began with the maximization of an energy efficiency of the used microwave plasma source. The process of maximization involved determining a position of a movable plunger that ensures the most efficient transfer of microwave energy from a microwave source to the generated plasma in the microwave plasma source. The aim of the investigations was to test the following working conditions of the microwave plasma source: absorbed microwave power P by the generated plasma (up to 5.4 kW), the carrier gas volumetric flow rate (up to 3900 Nl/h), and the amount of the introduced ethanol vapours on the efficiency of hydrogen production (up to 2.4 kg/h). In the range of tested working conditions, the highest energy yield for hydrogen production achieved a rate of 26.9 g(H)/kWh, while the highest hydrogen production was 99.3 g(H)/h.
这项工作展示了利用915兆赫的常压微波等离子体通过乙醇蒸汽重整制氢的能量效率的实验结果。由于乙醇的氢原子含量高、成本低且易于获取,因此被选作液态氢载体。实验工作首先是使所用微波等离子体源的能量效率最大化。最大化过程包括确定可移动活塞的位置,以确保微波能量从微波源最有效地传输到微波等离子体源中产生的等离子体。研究目的是测试微波等离子体源的以下工作条件:产生的等离子体吸收的微波功率P(高达5.4千瓦)、载气的体积流量(高达3900标准升/小时)以及引入的乙醇蒸汽量对制氢效率的影响(高达2.4千克/小时)。在测试的工作条件范围内,制氢的最高能量产率达到26.9克(氢)/千瓦时,而最高产氢量为99.3克(氢)/小时。