Park Kyoung Chul, Lim Jaewoong, Thaggard Grace C, Shustova Natalia B
Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States.
J Am Chem Soc. 2024 Jul 10;146(27):18189-18204. doi: 10.1021/jacs.4c06088. Epub 2024 Jun 29.
The conceptual framework presented in this Perspective overviews the design principles of innovative thorium-based materials that could address urgent needs of the medicinal, nuclear energy, and waste remediation sectors from the lens of zirconium and uranium analogs. We survey the intersections of Zr, Th, and U chemistry with a focus on how the intrinsic behavior of each metal translates to broader material properties, including, but not limited to, structural and topological diversity, preferential metal-ligand binding, and reactivity. On the example of several classes of materials, including organometallic complexes, polyoxometalates, and the primary focus of this Perspective, metal-organic frameworks (MOFs), the design principles that govern the preparation of Zr-, Th-, and U-compounds, including oxophilicity, variation in oxidation states, and stable coordination environments have been considered. Further, we highlight how the impact of the mentioned variables may shift throughout the progression from discrete molecular systems to extended structures. We discuss the common assumption that zirconium-organic materials are typically considered a close analog of thorium-based congeners in areas such as material design and preparation. Through consideration of fundamental chemistry principles, we shed light on the relationships between Zr-, Th-, and U-based materials and highlight how a critical analysis of their distinct properties can be used to target a desired material performance. As a result, we provide a detailed understanding of Th-based materials chemistry by anchoring their fundamental properties between two well-studied reference points, zirconium- and uranium-containing analogs.
本《观点》中提出的概念框架概述了创新的钍基材料的设计原则,这些原则可以从锆和铀类似物的角度解决医药、核能和废物修复领域的迫切需求。我们考察了Zr、Th和U化学的交叉点,重点关注每种金属的内在行为如何转化为更广泛的材料特性,包括但不限于结构和拓扑多样性、优先的金属-配体结合以及反应活性。以几类材料为例,包括有机金属配合物、多金属氧酸盐以及本《观点》的主要关注点——金属有机框架(MOF),我们考虑了指导Zr、Th和U化合物制备的设计原则,包括亲氧性、氧化态变化以及稳定的配位环境。此外,我们强调了上述变量的影响在从离散分子体系到扩展结构的过程中可能如何变化。我们讨论了一个常见的假设,即在材料设计和制备等领域,锆基有机材料通常被认为是钍基同类物的紧密类似物。通过考虑基本化学原理,我们阐明了Zr基、Th基和U基材料之间的关系,并强调了如何通过对它们独特性质的批判性分析来实现所需的材料性能。因此,我们通过将钍基材料的基本性质锚定在两个研究充分的参考点——含锆和含铀类似物之间,详细阐述了钍基材料化学。