Suppr超能文献

通过对非侵入性收集的人胃液体样本的 SERS 光谱特征进行机器学习分析,鉴定 Correa 级联中的慢性非萎缩性胃炎和肠上皮化生阶段。

Identification of chronic non-atrophic gastritis and intestinal metaplasia stages in the Correa's cascade through machine learning analyses of SERS spectral signature of non-invasively-collected human gastric fluid samples.

机构信息

Medical Technology School, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.

Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huai'an, Jiangsu Province, China.

出版信息

Biosens Bioelectron. 2024 Oct 15;262:116530. doi: 10.1016/j.bios.2024.116530. Epub 2024 Jun 26.

Abstract

The progression of gastric cancer involves a complex multi-stage process, with gastroscopy and biopsy being the standard procedures for diagnosing gastric diseases. This study introduces an innovative non-invasive approach to differentiate gastric disease stage using gastric fluid samples through machine-learning-assisted surface-enhanced Raman spectroscopy (SERS). This method effectively identifies different stages of gastric lesions. The XGBoost algorithm demonstrates the highest accuracy of 96.88% and 91.67%, respectively, in distinguishing chronic non-atrophic gastritis from intestinal metaplasia and different subtypes of gastritis (mild, moderate, and severe). Through blinded testing validation, the model can achieve more than 80% accuracy. These findings offer new possibilities for rapid, cost-effective, and minimally invasive diagnosis of gastric diseases.

摘要

胃癌的进展涉及一个复杂的多阶段过程,胃镜检查和活检是诊断胃部疾病的标准程序。本研究引入了一种创新的非侵入性方法,通过机器学习辅助的表面增强拉曼光谱(SERS)利用胃液样本来区分胃疾病阶段。该方法可有效识别不同阶段的胃部病变。XGBoost 算法在区分慢性非萎缩性胃炎与肠上皮化生以及不同类型的胃炎(轻度、中度和重度)方面表现出最高的准确率,分别为 96.88%和 91.67%。通过盲法测试验证,该模型可以达到 80%以上的准确率。这些发现为快速、经济高效和微创诊断胃部疾病提供了新的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验