Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujarat, India; P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujarat, India.
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, University of Science and Technology, 16846 Tehran, Iran.
Int J Biol Macromol. 2024 Jul;273(Pt 1):132953. doi: 10.1016/j.ijbiomac.2024.132953. Epub 2024 Jun 29.
This study investigates the potential applications of incorporating 2D bacterial cellulose microfibers (BCM) biochar into chitosan/polyethyleneimine beads as a semi-natural sorbent for the efficient removal of tetracycline (TET) and metronidazole (MET) antibiotics. Batch adsorption experiments and characterization techniques evaluate removal performance and synthesized adsorbent properties. The adsorbent eliminated 99.13 % and 90 % of TET and MET at a 10 mg.L concentration with optimal pH values of 8 and 6, respectively, for 90 min. Under optimum conditions and a 400 mg.L concentration, MET and TET have possessed the maximum adsorption capacities of 691.325 and 960.778 mg.g, respectively. According to the isothermal analysis, the adsorption of TET fundamentally follows the Temkin (R = 0.997), Redlich-Peterson (R = 0.996), and Langmuir (R = 0.996) models. In contrast, the MET adsorption can be described by the Langmuir (R = 0.997), and Toth (R = 0.991) models. The pseudo-second-order (R = 0.998, 0.992) and Avrami (R = 0.999, 0.999) kinetic models were well-fitted with the kinetic results for MET and TET respectively. Diffusion models recommend that pore, liquid-film, and intraparticle diffusion govern the rate of the adsorption process. The developed semi-natural sorbent demonstrated exceptional adsorption capacity over eleven cycles due to its porous bead structure, making it a potential candidate for wastewater remediation.
本研究探讨了将二维细菌纤维素微纤维(BCM)生物炭纳入壳聚糖/聚乙烯亚胺珠中的潜在应用,作为一种半天然吸附剂,用于高效去除四环素(TET)和甲硝唑(MET)抗生素。批量吸附实验和表征技术评估了去除性能和合成吸附剂的特性。在最佳 pH 值为 8 和 6 时,吸附剂在 10 mg·L -1浓度下分别消除了 99.13%和 90%的 TET 和 MET,反应时间为 90 min。在最佳条件和 400 mg·L -1浓度下,MET 和 TET 的最大吸附容量分别为 691.325 和 960.778 mg·g -1。根据等温分析,TET 的吸附基本遵循 Temkin(R=0.997)、Redlich-Peterson(R=0.996)和 Langmuir(R=0.996)模型。相比之下,MET 的吸附可以用 Langmuir(R=0.997)和 Toth(R=0.991)模型来描述。准二级(R=0.998,0.992)和 Avrami(R=0.999,0.999)动力学模型很好地拟合了 MET 和 TET 的动力学结果。扩散模型表明,孔、液膜和内扩散控制着吸附过程的速率。由于其多孔珠状结构,开发的半天然吸附剂在十一次循环后表现出出色的吸附能力,是废水修复的潜在候选材料。