Suppr超能文献

比较印度城乡流动性变化和环境因素对新冠疫情浪潮的滞后影响:一项贝叶斯时空建模研究

Comparing lagged impacts of mobility changes and environmental factors on COVID-19 waves in rural and urban India: a Bayesian spatiotemporal modelling study.

作者信息

Cleary Eimear, Atuhaire Fatumah, Sorcihetta Alessandro, Ruktanonchai Nick, Ruktanonchai Cori, Cunningham Alexander, Pasqui Massimiliano, Schiavina Marcello, Melchiorri Michele, Bondarenko Maksym, Shepherd Harry E R, Padmadas Sabu S, Wesolowski Amy, Cummings Derek A T, Tatem Andrew J, Lai Shengjie

机构信息

WorldPop, School of Geography and Environmental Science, University of Southampton, UK.

Department of Earth Sciences "Ardito Desio", Universita degli Studi di Milano, Milan, Italy.

出版信息

medRxiv. 2024 Jun 14:2024.06.12.24308871. doi: 10.1101/2024.06.12.24308871.

Abstract

Previous research in India has identified urbanisation, human mobility and population demographics as key variables associated with higher district level COVID-19 incidence. However, the spatiotemporal dynamics of mobility patterns in rural and urban areas in India, in conjunction with other drivers of COVID-19 transmission, have not been fully investigated. We explored travel networks within India during two pandemic waves using aggregated and anonymized weekly human movement datasets obtained from Google, and quantified changes in mobility before and during the pandemic compared with the mean baseline mobility for the 8-week time period at the beginning of 2020. We fit Bayesian spatiotemporal hierarchical models coupled with distributed lag non-linear models (DLNM) within the integrated nested Laplace approximate (INLA) package in R to examine the lag-response associations of drivers of COVID-19 transmission in urban, suburban, and rural districts in India during two pandemic waves in 2020-2021. Model results demonstrate that recovery of mobility to 99% that of pre-pandemic levels was associated with an increase in relative risk of COVID-19 transmission during the Delta wave of transmission. This increased mobility, coupled with reduced stringency in public intervention policy and the emergence of the Delta variant, were the main contributors to the high COVID-19 transmission peak in India in April 2021. During both pandemic waves in India, reduction in human mobility, higher stringency of interventions, and climate factors (temperature and precipitation) had 2-week lag-response impacts on the of COVID-19 transmission, with variations in drivers of COVID-19 transmission observed across urban, rural and suburban areas. With the increased likelihood of emergent novel infections and disease outbreaks under a changing global climate, providing a framework for understanding the lagged impact of spatiotemporal drivers of infection transmission will be crucial for informing interventions.

摘要

印度此前的研究已确定城市化、人口流动和人口统计数据是与地区层面较高的新冠疫情发病率相关的关键变量。然而,印度农村和城市地区流动模式的时空动态,以及新冠病毒传播的其他驱动因素,尚未得到充分研究。我们利用从谷歌获得的汇总且匿名的每周人类移动数据集,探索了印度在两波疫情期间的出行网络,并将疫情前和疫情期间的流动性变化与2020年初8周时间段的平均基线流动性进行了量化比较。我们在R语言的集成嵌套拉普拉斯近似(INLA)软件包中,拟合了贝叶斯时空分层模型以及分布滞后非线性模型(DLNM),以研究2020 - 2021年印度两波疫情期间城市、郊区和农村地区新冠病毒传播驱动因素的滞后响应关联。模型结果表明,流动性恢复到疫情前水平的99%与德尔塔传播波期间新冠病毒传播相对风险的增加有关。这种流动性的增加,再加上公共干预政策的严格性降低以及德尔塔变异株的出现,是2021年4月印度新冠病毒传播高峰的主要促成因素。在印度的两波疫情期间,人类流动性的减少、干预措施的更高严格性以及气候因素(温度和降水)对新冠病毒传播率有两周的滞后响应影响,且在城市、农村和郊区观察到新冠病毒传播驱动因素的差异。随着在不断变化的全球气候下出现新的感染和疾病爆发的可能性增加,提供一个理解感染传播时空驱动因素滞后影响的框架对于为干预措施提供信息至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e0/11213100/ef235f82dbf1/nihpp-2024.06.12.24308871v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验