Kieft Rudo, Cliffe Laura, Yan Haidong, Schmitz Robert J, Hajduk Stephen L, Sabatini Robert
bioRxiv. 2024 Sep 20:2024.06.21.600114. doi: 10.1101/2024.06.21.600114.
Unique for a eukaryote, protein-coding genes in trypanosomes are arranged in polycistronic units (PTUs). This genome arrangement has led to a model where Pol II transcription of PTUs is unregulated and that changes in gene expression are entirely post-transcriptional. Trypanosoma brucei brucei is unable to infect humans because of its susceptibility to an innate immune complex, trypanosome lytic factor (TLF) in the circulation of humans. The initial step in TLF mediated lysis of requires high affinity haptoglobin/hemoglobin receptor (HpHbR) binding. Here we demonstrate that by selection with TLF, resistance is obtained in a stepwise process correlating with loss of HpHbR expression at an allelic level. RNA-seq, Pol II ChIP and run-on analysis indicate HpHbR silencing is at the transcriptional level, where loss of Pol II binding at the promoter region specifically shuts down transcription of the HpHbR containing gene cluster and the adjacent opposing gene cluster. Reversible transcriptional silencing of the divergent PTUs correlates with DNA base J modification of the shared promoter region. Therefore, we show that epigenetic mechanisms, including base J modification, are involved in regulating gene expression via Pol II transcription initiation of gene clusters in a mono-allelic fashion. These findings suggest epigenetic chromatin-based regulation of gene expression is deeply conserved among eukaryotes, including early divergent eukaryotes that rely on polycistronic transcription.
The single-cell parasite causes lethal diseases in both humans and livestock. undergoes multiple developmental changes to adapt in different environments during its digenetic life cycle. With protein-coding genes organized as polycistronic transcription and apparent absence of promoter-mediated regulation of transcription initiation, it is believed that developmental gene regulation in trypanosomes is essentially post-transcriptional. In this study, we found reversible Pol II transcriptional silencing of two adjacent polycistronic gene arrays that correlates with the novel DNA base J modification of the shared promoter region. Our findings support epigenetic regulation of Pol II transcription initiation as a viable mechanism of gene expression control in . This has implications for our understanding how trypanosomes utilize polycistronic genome organization to regulate gene expression during its life cycle.
锥虫中的蛋白质编码基因以多顺反子单元(PTU)排列,这在真核生物中是独特的。这种基因组排列导致了一种模型,即PTU的RNA聚合酶II(Pol II)转录不受调控,基因表达的变化完全是转录后水平的。布氏布氏锥虫由于对人类循环中的一种天然免疫复合物——锥虫溶解因子(TLF)敏感,因而无法感染人类。TLF介导的裂解的初始步骤需要高亲和力的触珠蛋白/血红蛋白受体(HpHbR)结合。在此,我们证明通过用TLF进行选择,可在一个与等位基因水平上HpHbR表达缺失相关的逐步过程中获得抗性。RNA测序、Pol II染色质免疫沉淀(ChIP)和延伸分析表明,HpHbR沉默发生在转录水平,其中Pol II在启动子区域的结合缺失特异性地关闭了包含HpHbR的基因簇以及相邻的反向基因簇的转录。不同方向的PTU的可逆转录沉默与共享启动子区域的DNA碱基J修饰相关。因此,我们表明表观遗传机制,包括碱基J修饰,以单等位基因方式通过基因簇的Pol II转录起始参与调控基因表达。这些发现表明基于表观遗传染色质的基因表达调控在真核生物中是高度保守的,包括依赖多顺反子转录的早期分化真核生物。
单细胞寄生虫在人类和家畜中都会引发致命疾病。在其双宿主生命周期中会经历多次发育变化以适应不同环境。由于蛋白质编码基因组织为多顺反子转录且明显缺乏启动子介导的转录起始调控,人们认为锥虫中的发育基因调控本质上是转录后水平的。在本研究中,我们发现两个相邻多顺反子基因阵列的可逆Pol II转录沉默与共享启动子区域新的DNA碱基J修饰相关。我们的发现支持Pol II转录起始的表观遗传调控是锥虫中基因表达控制的一种可行机制。这对于我们理解锥虫如何利用多顺反子基因组组织在其生命周期中调控基因表达具有重要意义。