基于模型的分析:经皮磁刺激脊髓对人类脊髓损伤后排尿的急性影响。
Model-based analysis of the acute effects of transcutaneous magnetic spinal cord stimulation on micturition after spinal cord injury in humans.
机构信息
Department of Mechanical Engineering, University of California, Los Angeles, California, United States of America.
White River Junction VA Medical Center, White River Junction, Vermont, United States of America.
出版信息
PLoS Comput Biol. 2024 Jul 1;20(7):e1012237. doi: 10.1371/journal.pcbi.1012237. eCollection 2024 Jul.
AIM
After spinal cord injuries (SCIs), patients may develop either detrusor-sphincter dyssynergia (DSD) or urinary incontinence, depending on the level of the spinal injury. DSD and incontinence reflect the loss of coordinated neural control among the detrusor muscle, which increases bladder pressure to facilitate urination, and urethral sphincters and pelvic floor muscles, which control the bladder outlet to restrict or permit bladder emptying. Transcutaneous magnetic stimulation (TMS) applied to the spinal cord after SCI reduced DSD and incontinence. We defined, within a mathematical model, the minimum neuronal elements necessary to replicate neurogenic dysfunction of the bladder after a SCI and incorporated into this model the minimum additional neurophysiological features sufficient to replicate the improvements in bladder function associated with lumbar TMS of the spine in patients with SCI.
METHODS
We created a computational model of the neural circuit of micturition based on Hodgkin-Huxley equations that replicated normal bladder function. We added interneurons and increased network complexity to reproduce dysfunctional micturition after SCI, and we increased the density and complexity of interactions of both inhibitory and excitatory lumbar spinal interneurons responsive to TMS to provide a more diverse set of spinal responses to intrinsic and extrinsic activation of spinal interneurons that remains after SCI.
RESULTS
The model reproduced the re-emergence of a spinal voiding reflex after SCI. When we investigated the effect of monophasic and biphasic TMS at two frequencies applied at or below T10, the model replicated the improved coordination between detrusor and external urethral sphincter activity that has been observed clinically: low-frequency TMS (1 Hz) within the model normalized control of voiding after SCI, whereas high-frequency TMS (30 Hz) enhanced urine storage.
CONCLUSION
Neuroplasticity and increased complexity of interactions among lumbar interneurons, beyond what is necessary to simulate normal bladder function, must be present in order to replicate the effects of SCI on control of micturition, and both neuronal and network modifications of lumbar interneurons are essential to understand the mechanisms whereby TMS reduced bladder dysfunction after SCI.
目的
脊髓损伤(SCI)后,患者可能出现逼尿肌-括约肌协同失调(DSD)或尿失禁,这取决于脊髓损伤的水平。DSD 和失禁反映了逼尿肌、尿道括约肌和盆底肌之间协调的神经控制丧失,逼尿肌增加膀胱压力以促进排尿,尿道括约肌和盆底肌控制膀胱出口以限制或允许膀胱排空。SCI 后对脊髓进行经皮磁刺激(TMS)可减少 DSD 和失禁。我们在数学模型中定义了产生 SCI 后神经源性膀胱功能障碍所需的最小神经元元素,并将最小的额外神经生理特征纳入该模型,这些特征足以复制与 SCI 患者脊柱 TMS 相关的改善膀胱功能。
方法
我们根据 Hodgkin-Huxley 方程创建了一个排尿神经回路的计算模型,该模型复制了正常的膀胱功能。我们添加了中间神经元并增加了网络复杂性,以重现 SCI 后的功能障碍性排尿,并增加了对 TMS 有反应的腰脊髓中间神经元的抑制和兴奋性相互作用的密度和复杂性,以提供更广泛的脊髓反应,以适应 SCI 后内在和外在激活的脊髓中间神经元。
结果
该模型再现了 SCI 后出现的脊髓排空反射。当我们研究在 T10 或以下施加的单相和双相 TMS 在两种频率下的效果时,该模型复制了临床上观察到的改善逼尿肌和外部尿道括约肌活动之间的协调性:模型内 1 Hz 的低频 TMS 使 SCI 后正常排尿得到控制,而 30 Hz 的高频 TMS 增强了尿液储存。
结论
为了复制 SCI 对排尿控制的影响,必须存在腰脊髓中间神经元之间的神经可塑性和相互作用的复杂性增加,这超出了模拟正常膀胱功能所必需的复杂性;并且腰脊髓中间神经元的神经元和网络改变对于理解 TMS 如何减少 SCI 后膀胱功能障碍的机制至关重要。
相似文献
Int J Mol Sci. 2023-4-26
Cochrane Database Syst Rev. 2014-5-24
引用本文的文献
本文引用的文献
Front Syst Neurosci. 2020-2-6
Brain Stimul. 2019-10-3
Nat Commun. 2019-6-14
Front Neurosci. 2018-6-29
Int Neurourol J. 2018-3