Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
Environ Sci Technol. 2024 Jul 16;58(28):12575-12584. doi: 10.1021/acs.est.4c02297. Epub 2024 Jul 2.
There is a notable lack of continuous monitoring of air pollutants in the Global South, especially for measuring chemical composition, due to the high cost of regulatory monitors. Using our previously developed low-cost method to quantify black carbon (BC) in fine particulate matter (PM) by analyzing reflected red light from ambient particle deposits on glass fiber filters, we estimated hourly ambient BC concentrations with filter tapes from beta attenuation monitors (BAMs). BC measurements obtained through this method were validated against a reference aethalometer between August 2 and 23, 2023 in Addis Ababa, Ethiopia, demonstrating a very strong agreement ( = 0.95 and slope = 0.97). We present hourly BC for three cities in sub-Saharan Africa (SSA) and one in North America: Abidjan (Côte d'Ivoire), Accra (Ghana), Addis Ababa (Ethiopia), and Pittsburgh (USA). The average BC concentrations for the measurement period at the Abidjan, Accra, Addis Ababa Central summer, Addis Ababa Central winter, Addis Ababa Jacros winter, and Pittsburgh sites were 3.85 μg/m, 5.33 μg/m, 5.63 μg/m, 3.89 μg/m, 9.14 μg/m, and 0.52 μg/m, respectively. BC made up 14-20% of PM mass in the SSA cities compared to only 5.6% in Pittsburgh. The hourly BC data at all sites (SSA and North America) show a pronounced diurnal pattern with prominent peaks during the morning and evening rush hours on workdays. A comparison between our measurements and the Goddard Earth Observing System Composition Forecast (GEOS-CF) estimates shows that the model performs well in predicting PM for most sites but struggles to predict BC at an hourly resolution. Adding more ground measurements could help evaluate and improve the performance of chemical transport models. Our method can potentially use existing BAM networks, such as BAMs at U.S. Embassies around the globe, to measure hourly BC concentrations. The PM composition data, thus acquired, can be crucial in identifying emission sources and help in effective policymaking in SSA.
在全球南方,由于监管监测器成本高昂,对空气污染物进行连续监测,特别是对化学成分进行测量,这方面存在明显的不足。我们之前开发了一种通过分析沉积在玻璃纤维滤膜上的环境颗粒物反射红光来量化细颗粒物中黑碳(BC)的低成本方法,并用β衰减监测器(BAMs)的滤带对每小时环境 BC 浓度进行了估算。2023 年 8 月 2 日至 23 日,我们在埃塞俄比亚的亚的斯亚贝巴使用该方法获得的 BC 测量值与参考吸光光度计进行了验证,结果显示两者非常吻合(=0.95,斜率=0.97)。我们展示了撒哈拉以南非洲(SSA)三个城市和北美一个城市的每小时 BC 数据:阿比让(科特迪瓦)、阿克拉(加纳)、亚的斯亚贝巴(埃塞俄比亚)和匹兹堡(美国)。在阿比让、阿克拉、亚的斯亚贝巴中心夏季、亚的斯亚贝巴中心冬季、亚的斯亚贝巴 Jacros 冬季和匹兹堡站点的测量期间,BC 的平均浓度分别为 3.85μg/m、5.33μg/m、5.63μg/m、3.89μg/m、9.14μg/m和 0.52μg/m。与匹兹堡相比,SSA 城市的 PM 质量中 BC 占 14-20%,而在匹兹堡仅占 5.6%。所有站点(SSA 和北美)的每小时 BC 数据都显示出明显的日变化规律,在工作日早晚高峰时段出现明显峰值。将我们的测量值与戈达德地球观测系统成分预测(GEOS-CF)的估计值进行比较表明,该模型在预测大多数站点的 PM 方面表现良好,但在每小时分辨率下预测 BC 时却存在困难。增加更多的地面测量数据可以帮助评估和改进化学输送模型的性能。我们的方法可以利用现有的 BAM 网络,例如全球美国大使馆的 BAMs,来测量每小时的 BC 浓度。由此获得的 PM 成分数据对于确定排放源和帮助 SSA 制定有效的政策至关重要。