Liu Chun, Wang Mingkang, Wang Jing, Xu Guangyu, Zhang Sizhao, Ding Feng
Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang, Jiangxi, 330013, China.
Thermal Control Technology Laboratory of Aircraft in Space Environment, Jiangxi University of Science and Technology, Nanchang, Jiangxi, 330013, China.
Small. 2024 Nov;20(44):e2404104. doi: 10.1002/smll.202404104. Epub 2024 Jul 2.
Polyimide aerogels have been extensively used in thermal protection domain because they possess a combination of intrinsic characteristics of aerogels and unique features of polyimide. However, polyimide aerogels still suffer significant thermally induced shrinkage at temperatures above 200 °C, restricting their application at high temperature. Here, a novel "double-phase-networking" strategy is proposed for fabricating a lightweight and mechanically robust polyimide hybrid aerogel by forming silica-zirconia-phase networking skeletons, which possess exceptional dimensional stability in high-temperature environments and superior thermal insulation. The rational mechanism responsible for the formation of double-phase-networking aerogel is further explained, generally attributing to chemical crosslinking reactions and supramolecular hydrogen bond interactions derived from the main chains of polyimide and silane/zirconia precursor/sol. The as-prepared aerogels exhibit excellent high-temperature (270 °C) dimensional stability (5.09% ± 0.16%), anti-thermal-shock properties, and low thermal conductivity. Moreover, the hydrophobic treatment provides aerogels high water resistance with water contact angle of 136.9°, further suggestive of low moisture content of 3.6% after exposure to 70 °C and 85% relative humidity for 64 h. The proposed solution for significantly enhancing high-temperature dimensional stability and thermal insulation provides a great supporting foundation for fabricating high-performance organic aerogels as thermal protection materials in aerospace.
聚酰亚胺气凝胶因其兼具气凝胶的固有特性和聚酰亚胺的独特性能,已在热防护领域得到广泛应用。然而,聚酰亚胺气凝胶在温度高于200°C时仍会出现显著的热致收缩,限制了其在高温下的应用。在此,提出了一种新颖的“双相网络”策略,通过形成二氧化硅 - 氧化锆相网络骨架来制备轻质且机械性能强健的聚酰亚胺杂化气凝胶,该骨架在高温环境中具有出色的尺寸稳定性和卓越的隔热性能。进一步解释了双相网络气凝胶形成的合理机制,通常归因于聚酰亚胺主链与硅烷/氧化锆前驱体/溶胶之间的化学交联反应和超分子氢键相互作用。所制备的气凝胶在270°C时表现出优异的尺寸稳定性(5.09% ± 0.16%)、抗热震性能和低导热率。此外,疏水处理使气凝胶具有高耐水性,水接触角为136.9°,进一步表明在70°C和85%相对湿度下暴露64小时后,其含水量低至3.6%。所提出的显著提高高温尺寸稳定性和隔热性能的解决方案,为制造高性能有机气凝胶作为航空航天热防护材料提供了有力的支撑基础。