Rahman Khaista, Khishe Mohammad
Department of Mathematics, Shaheed Benazir Bhutto University Sheringal, Dir Upper, 1800, Pakistan.
Department of Electrical Engineering, Imam Khomeini Naval Science University of Nowshahr, Nowshahr, Iran.
Sci Rep. 2024 Jul 2;14(1):15253. doi: 10.1038/s41598-024-65679-w.
A complex Polytopic fuzzy set (CPoFS) extends a Polytopic fuzzy set (PoFS) by handling vagueness with degrees that range from real numbers to complex numbers within the unit disc. This extension allows for a more nuanced representation of uncertainty. In this research, we develop Complex Polytopic Fuzzy Sets (CPoFS) and establish basic operational laws of CPoFS. Leveraging these laws, we introduce new operators under a confidence level, including the confidence complex Polytopic fuzzy Einstein weighted geometric aggregation (CCPoFEWGA) operator, the confidence complex Polytopic fuzzy Einstein ordered weighted geometric aggregation (CCPoFEOWGA) operator, the confidence complex Polytopic fuzzy Einstein hybrid geometric aggregation (CCPoFEHGA) operator, the induced confidence complex Polytopic fuzzy Einstein ordered weighted geometric aggregation (I-CCPoFEOWGA) operator and the induced confidence complex Polytopic fuzzy Einstein hybrid geometric aggregation (I-CCPoFEHGA) operator, enhancing decision-making precision in uncertain environments. We also investigate key properties of these operators, including monotonicity, boundedness, and idempotency. With these operators, we create an algorithm designed to solve multiattribute decision-making problems in a Polytopic fuzzy environment. To demonstrate the effectiveness of our proposed method, we apply it to a numerical example and compare its flexibility with existing methods. This comparison will underscore the advantages and enhancements of our approach, showing its efficiency in managing complex decision-making scenarios. Through this, we aim to demonstrate how our method provides superior performance and adaptability across different situations.
复多主题模糊集(CPoFS)通过处理从实数到单位圆盘内复数范围内的不同程度的模糊性,对多主题模糊集(PoFS)进行了扩展。这种扩展允许对不确定性进行更细致入微的表示。在本研究中,我们开发了复多主题模糊集(CPoFS)并建立了CPoFS的基本运算定律。利用这些定律,我们引入了置信水平下的新算子,包括置信复多主题模糊爱因斯坦加权几何聚合(CCPoFEWGA)算子、置信复多主题模糊爱因斯坦有序加权几何聚合(CCPoFEOWGA)算子、置信复多主题模糊爱因斯坦混合几何聚合(CCPoFEHGA)算子、诱导置信复多主题模糊爱因斯坦有序加权几何聚合(I - CCPoFEOWGA)算子和诱导置信复多主题模糊爱因斯坦混合几何聚合(I - CCPoFEHGA)算子,提高了不确定环境下的决策精度。我们还研究了这些算子的关键性质,包括单调性、有界性和幂等性。利用这些算子,我们创建了一种算法,旨在解决多主题模糊环境中的多属性决策问题。为了证明我们提出的方法的有效性,我们将其应用于一个数值示例,并将其灵活性与现有方法进行比较。这种比较将突出我们方法的优势和改进,展示其在管理复杂决策场景中的效率。通过这一点,我们旨在证明我们的方法如何在不同情况下提供卓越的性能和适应性。