Kunimune J H, Casey D T, Kustowski B, Geppert-Kleinrath V, Divol L, Fittinghoff D N, Volegov P L, Kruse M K G, Gaffney J A, Nora R C, Frenje J A
Plasma Science and Fusion Center, Massachusetts Institute of Technology, 167 Albany St., Cambridge, Massachesetts 02139, USA.
Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, USA.
Rev Sci Instrum. 2024 Jul 1;95(7). doi: 10.1063/5.0205656.
3D asymmetries are major degradation mechanisms in inertial-confinement fusion implosions at the National Ignition Facility (NIF). These asymmetries can be diagnosed and reconstructed with the neutron imaging system (NIS) on three lines of sight around the NIF target chamber. Conventional tomographic reconstructions are used to reconstruct the 3D morphology of the implosion using NIS [Volegov et al., J. Appl. Phys. 127, 083301 (2020)], but the problem is ill-posed with only three imaging lines of sight. Asymmetries can also be diagnosed with the real-time neutron activation diagnostics (RTNAD) and the neutron time-of-flight (nToF) suite. Since the NIS, RTNAD, and nToF each sample a different part of the implosion using different physical principles, we propose that it is possible to overcome the limitations of too few imaging lines of sight by performing 3D reconstructions that combine information from all three heterogeneous data sources. This work presents a new machine learning-based reconstruction technique to do just this. By using a simple physics model and group of neural networks to map 3D morphologies to data, this technique can easily account for data of multiple different types. A simple proof-of-principle is presented, demonstrating that this technique can accurately reconstruct a hot-spot shape using synthetic primary neutron images and a hot-spot velocity vector. In particular, the hot-spot's asymmetry, quantified as spherical harmonic coefficients, is reconstructed to within ±4% of the radius in 90% of test cases. In the future, this technique will be applied to actual NIS, RTNAD, and nToF data to better understand 3D asymmetries at the NIF.
三维不对称性是国家点火装置(NIF)惯性约束聚变内爆中的主要退化机制。这些不对称性可以通过NIF靶室周围三条视线上的中子成像系统(NIS)进行诊断和重建。传统的断层重建用于使用NIS重建内爆的三维形态[Volegov等人,《应用物理杂志》127,083301(2020)],但该问题在仅有三条成像视线的情况下是不适定的。不对称性也可以通过实时中子活化诊断(RTNAD)和中子飞行时间(nToF)套件进行诊断。由于NIS、RTNAD和nToF各自使用不同的物理原理对内爆的不同部分进行采样,我们提出通过执行结合来自所有三个异构数据源信息的三维重建来克服成像视线过少的限制是可行的。这项工作提出了一种新的基于机器学习的重建技术来实现这一点。通过使用简单的物理模型和一组神经网络将三维形态映射到数据,该技术可以轻松处理多种不同类型的数据。给出了一个简单的原理验证,表明该技术可以使用合成的初级中子图像和热点速度矢量准确重建热点形状。特别是,以球谐系数量化的热点不对称性在90%的测试案例中被重建到半径的±4%以内。未来,该技术将应用于实际的NIS、RTNAD和nToF数据,以更好地理解NIF的三维不对称性。