Gantumur Munkhtuul, Hossain Mohammad Ismail, Shahiduzzaman Md, Tamang Asman, Rafij Junayed Hossain, Shahinuzzaman Md, Thi Cam Tu Huynh, Nakano Masahiro, Karakawa Makoto, Ohdaira Keisuke, AlMohamadi Hamad, Ibrahim Mohd Adib, Sopian Kamaruzzaman, Akhtaruzzaman Md, Nunzi Jean Michel, Taima Tetsuya
Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma, Kanazawa 920-1292, Japan.
Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States.
ACS Appl Mater Interfaces. 2024 Jul 17;16(28):36255-36271. doi: 10.1021/acsami.4c03591. Epub 2024 Jul 3.
This study delves into enhancing the efficiency and stability of perovskite solar cells (PSCs) by optimizing the surface morphologies and optoelectronic properties of the electron transport layer (ETL) using tungsten (W) doping in zinc oxide (ZnO). Through a unique green synthesis process and spin-coating technique, W-doped ZnO films were prepared, exhibiting improved electrical conductivity and reduced interface defects between the ETL and perovskite layers, thus facilitating efficient electron transfer at the interface. High-quality PSCs with superior ETL demonstrated a substantial 30% increase in power conversion efficiency (PCE) compared to those employing pristine ZnO ETL. These solar cells retained over 70% of their initial PCE after 4000 h of moisture exposure, surpassing reference PSCs by 50% PCE over this period. Advanced numerical multiphysics solvers, employing finite-difference time-domain (FDTD) and finite element method (FEM) techniques, were utilized to elucidate the underlying optoelectrical characteristics of the PSCs, with simulated results corroborating experimental findings. The study concludes with a thorough discussion on charge transport and recombination mechanisms, providing insights into the enhanced performance and stability achieved through W-doped ZnO ETL optimization.
本研究通过在氧化锌(ZnO)中使用钨(W)掺杂来优化电子传输层(ETL)的表面形貌和光电特性,深入探讨提高钙钛矿太阳能电池(PSC)的效率和稳定性。通过独特的绿色合成工艺和旋涂技术制备了W掺杂的ZnO薄膜,其表现出改善的电导率以及ETL与钙钛矿层之间减少的界面缺陷,从而促进了界面处的高效电子转移。与采用原始ZnO ETL的PSC相比,具有优异ETL的高质量PSC的功率转换效率(PCE)大幅提高了30%。这些太阳能电池在暴露于湿气4000小时后仍保留了超过70%的初始PCE,在此期间比参考PSC的PCE高出50%。采用有限时域差分(FDTD)和有限元方法(FEM)技术的先进数值多物理场求解器被用于阐明PSC的潜在光电特性,模拟结果证实了实验结果。该研究最后对电荷传输和复合机制进行了全面讨论,深入分析了通过W掺杂的ZnO ETL优化实现的性能增强和稳定性提高。