Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
Genome Biol. 2024 Jul 3;25(1):175. doi: 10.1186/s13059-024-03327-2.
Transposable elements play a critical role in maintaining genome architecture during neurodevelopment. Short Interspersed Nuclear Elements (SINEs), a major subtype of transposable elements, are known to harbor binding sites for the CCCTC-binding factor (CTCF) and pivotal in orchestrating chromatin organization. However, the regulatory mechanisms controlling the activity of SINEs in the developing brain remains elusive.
In our study, we conduct a comprehensive genome-wide epigenetic analysis in mouse neural precursor cells using ATAC-seq, ChIP-seq, whole genome bisulfite sequencing, in situ Hi-C, and RNA-seq. Our findings reveal that the SET domain bifurcated histone lysine methyltransferase 1 (SETDB1)-mediated H3K9me3, in conjunction with DNA methylation, restricts chromatin accessibility on a selective subset of SINEs in neural precursor cells. Mechanistically, loss of Setdb1 increases CTCF access to these SINE elements and contributes to chromatin loop reorganization. Moreover, de novo loop formation contributes to differential gene expression, including the dysregulation of genes enriched in mitotic pathways. This leads to the disruptions of cell proliferation in the embryonic brain after genetic ablation of Setdb1 both in vitro and in vivo.
In summary, our study sheds light on the epigenetic regulation of SINEs in mouse neural precursor cells, suggesting their role in maintaining chromatin organization and cell proliferation during neurodevelopment.
转座元件在神经发育过程中对维持基因组结构起着至关重要的作用。短散布核元件(SINEs)是转座元件的主要亚型之一,已知其含有与 CCCTC 结合因子(CTCF)结合的结合位点,并在调控染色质组织中起着关键作用。然而,控制发育中大脑中 SINE 活性的调节机制仍难以捉摸。
在我们的研究中,我们使用 ATAC-seq、ChIP-seq、全基因组亚硫酸氢盐测序、原位 Hi-C 和 RNA-seq 在小鼠神经前体细胞中进行了全面的全基因组表观遗传分析。我们的发现表明,SET 结构域分叉组蛋白赖氨酸甲基转移酶 1(SETDB1)介导的 H3K9me3 与 DNA 甲基化一起,限制了神经前体细胞中选择性 SINE 子集的染色质可及性。在机制上,Setdb1 的缺失增加了 CTCF 对这些 SINE 元件的访问,并有助于染色质环的重新组织。此外,从头形成的环形成有助于差异基因表达,包括有丝分裂途径中富集的基因的失调。这导致在体外和体内遗传消融 Setdb1 后,胚胎大脑中的细胞增殖受到破坏。
总之,我们的研究揭示了小鼠神经前体细胞中 SINE 的表观遗传调控,表明它们在维持染色质组织和神经发育过程中的细胞增殖中发挥作用。