Department of Pharmacology, School of Medicine, International University of Health and Welfare, Chiba, Japan.
Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
Am J Physiol Renal Physiol. 2024 Sep 1;327(3):F397-F411. doi: 10.1152/ajprenal.00124.2024. Epub 2024 Jul 4.
Epigenetic mechanisms are considered to contribute to diabetic nephropathy by maintaining memory of poor glycemic control during the early stages of diabetes. However, DNA methylation changes in the human kidney are poorly characterized, because of the lack of cell type-specific analysis. We examined DNA methylation in proximal tubules (PTs) purified from patients with diabetic nephropathy and identified differentially methylated CpG sites, given the critical role of proximal tubules in the kidney injury. Hypermethylation was observed at CpG sites annotated to genes responsible for proximal tubule functions, including gluconeogenesis, nicotinamide adenine dinucleotide synthesis, transporters of glucose, water, phosphate, and drugs, in diabetic kidneys, whereas genes involved in oxidative stress and the cytoskeleton exhibited demethylation. Methylation levels of CpG sites annotated to , , , , , , , , and were correlated with the estimated glomerular filtration rate, whereas methylation of the CpG site in was associated with interstitial fibrosis and tubular atrophy. Hypermethylation of and was accompanied by decreased expression in diabetic kidneys. Proximal tubule-specific hypomethylation of metabolic genes related to observed in control kidneys was compromised in diabetic kidneys, suggesting a role for aberrant DNA methylation in the dedifferentiation process. Multiple genes with aberrant DNA methylation in diabetes overlapped genes with altered expressions in maladaptive proximal tubule cells, including transcription factors and . In conclusion, DNA methylation derangement in the proximal tubules of patients with diabetes may drive phenotypic changes, characterized by inflammatory and fibrotic features, along with impaired function in metabolism and transport. Cell type-specific DNA methylation patterns in the human kidney are not known. We examined DNA methylation in proximal tubules of patients with diabetic nephropathy and revealed that oxidative stress, cytoskeleton, and metabolism genes were aberrantly methylated. The results indicate that aberrant DNA methylation in proximal tubules underlies kidney dysfunction in diabetic nephropathy. Aberrant methylation could be a target for reversing memory of poor glycemic control.
表观遗传机制被认为通过在糖尿病早期维持对血糖控制不良的记忆,从而导致糖尿病肾病。然而,由于缺乏细胞类型特异性分析,人类肾脏中的 DNA 甲基化变化特征描述不足。我们检查了来自糖尿病肾病患者的近端肾小管 (PT) 中的 DNA 甲基化,并确定了差异甲基化的 CpG 位点,因为近端肾小管在肾脏损伤中起着关键作用。在糖尿病肾脏中,观察到与近端肾小管功能相关的基因的 CpG 位点(包括糖异生、烟酰胺腺嘌呤二核苷酸合成、葡萄糖、水、磷酸盐和药物的转运体)发生超甲基化,而参与氧化应激和细胞骨架的基因则发生去甲基化。注释为 、 、 、 、 、 、 和 的 CpG 位点的甲基化水平与估计的肾小球滤过率相关,而 中的 CpG 位点的甲基化与间质纤维化和肾小管萎缩相关。糖尿病肾脏中, 与 基因的 CpG 位点的超甲基化伴随着表达降低。在对照肾脏中观察到的与 相关的代谢基因的近端肾小管特异性低甲基化在糖尿病肾脏中受损,这表明异常的 DNA 甲基化在去分化过程中起作用。糖尿病中异常的 DNA 甲基化的多个基因与适应性不良的近端肾小管细胞中改变的基因重叠,包括转录因子 和 。总之,糖尿病患者近端肾小管中的 DNA 甲基化紊乱可能会导致表型变化,其特征是炎症和纤维化特征,以及代谢和转运功能受损。目前尚不清楚人类肾脏中的细胞特异性 DNA 甲基化模式。我们检查了糖尿病肾病患者的近端肾小管中的 DNA 甲基化,并揭示了氧化应激、细胞骨架和代谢基因异常甲基化。这些结果表明,糖尿病肾病中近端肾小管的异常 DNA 甲基化是肾脏功能障碍的基础。异常的甲基化可能是逆转血糖控制不良记忆的靶点。