Suppr超能文献

老年泌尿道感染患者进展为感染性休克的列线图预测模型的构建与验证

Construction and validation of a nomogram prediction model for the progression to septic shock in elderly patients with urosepsis.

作者信息

Wei Jian, Zeng Ran, Liang Ruiyuan, Liu Siying, Hua Tianfeng, Xiao Wenyan, Zhu Huaqing, Liu Yu, Yang Min

机构信息

The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China.

Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui Province, China.

出版信息

Heliyon. 2024 Jun 5;10(11):e32454. doi: 10.1016/j.heliyon.2024.e32454. eCollection 2024 Jun 15.

Abstract

BACKGROUND

Septic shock is a clinical syndrome characterized by the progression of sepsis to a severe stage. Elderly patients with urosepsis in the intensive care unit (ICU) are more likely to progress to septic shock. This study aimed to establish and validate a nomogram model for predicting the risk of progression to septic shock in elderly patients with urosepsis.

METHODS

We extracted data from the Medical Information Mart for Intensive Care (MIMIC-IV) and the eICU Collaborative Research Database (eICU-CRD). The MIMIC-IV dataset was split into a training set for model development and an internal validation set to assess model performance. Further external validation was performed using a distinct dataset sourced from the eICU-CRD. Predictors were screened using least absolute shrinkage and selection operator (LASSO) regression and multivariable logistic regression analyses. The evaluation of model performance included discrimination, calibration, and clinical usefulness.

RESULTS

The study demonstrated that the Glasgow Coma Scale (GCS), white blood count (WBC), platelet, blood urea nitrogen (BUN), calcium, albumin, congestive heart failure (CHF), and invasive ventilation were closely associated with septic shock in the training cohort. Nomogram prediction, utilizing eight parameters, demonstrated strong predictive accuracy with area under the curve (AUC) values of 0.809 (95 % CI 0.786-0.834), 0.794 (95 % CI 0.756-0.831), and 0.723 (95 % CI 0.647-0.801) in the training, internal validation, and external validation sets, respectively. Additionally, the nomogram demonstrated a promising calibration performance and significant clinical usefulness in both the training and validation sets.

CONCLUSION

The constructed nomogram is a reliable and practical tool for predicting the risk of progression to septic shock in elderly patients with urosepsis. Its implementation in clinical practice may enhance the early identification of high-risk patients, facilitate timely and targeted interventions to mitigate the risk of septic shock, and improve patient outcomes.

摘要

背景

感染性休克是一种以脓毒症进展至严重阶段为特征的临床综合征。重症监护病房(ICU)中的老年泌尿系统感染患者更易进展为感染性休克。本研究旨在建立并验证一种用于预测老年泌尿系统感染患者进展为感染性休克风险的列线图模型。

方法

我们从重症监护医学信息集市(MIMIC-IV)和电子ICU协作研究数据库(eICU-CRD)中提取数据。MIMIC-IV数据集被分为用于模型开发的训练集和用于评估模型性能的内部验证集。使用来自eICU-CRD的不同数据集进行进一步的外部验证。采用最小绝对收缩和选择算子(LASSO)回归及多变量逻辑回归分析筛选预测因子。模型性能评估包括区分度、校准度和临床实用性。

结果

研究表明,在训练队列中,格拉斯哥昏迷量表(GCS)、白细胞计数(WBC)、血小板、血尿素氮(BUN)、钙、白蛋白、充血性心力衰竭(CHF)和有创通气与感染性休克密切相关。利用八个参数的列线图预测在训练集、内部验证集和外部验证集中分别显示出较强的预测准确性,曲线下面积(AUC)值分别为0.809(95%CI 0.786 - 0.834)、0.794(95%CI 0.756 - 0.831)和0.723(95%CI 0.647 - 0.801)。此外,列线图在训练集和验证集中均显示出良好的校准性能和显著的临床实用性。

结论

构建的列线图是预测老年泌尿系统感染患者进展为感染性休克风险的可靠且实用的工具。其在临床实践中的应用可能会加强对高危患者的早期识别,促进及时且有针对性的干预以降低感染性休克风险,并改善患者预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验