Suppr超能文献

慢动作人:一款用于在二维嵌入中沿着用户绘制的轨迹发现重要特征的网络应用程序。

SlowMoMan: a web app for discovery of important features along user-drawn trajectories in 2D embeddings.

作者信息

Deol Kiran, Weber Griffin M, Yu Yun William

机构信息

Department of Computer Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.

Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, United States.

出版信息

Bioinform Adv. 2024 Jun 21;4(1):vbae095. doi: 10.1093/bioadv/vbae095. eCollection 2024.

Abstract

MOTIVATION

Nonlinear low-dimensional embeddings allow humans to visualize high-dimensional data, as is often seen in bioinformatics, where datasets may have tens of thousands of dimensions. However, relating the axes of a nonlinear embedding to the original dimensions is a nontrivial problem. In particular, humans may identify patterns or interesting subsections in the embedding, but cannot easily identify what those patterns correspond to in the original data.

RESULTS

Thus, we present SlowMoMan (SLOW Motions on MANifolds), a web application which allows the user to draw a one-dimensional path onto a 2D embedding. Then, by back-projecting the manifold to the original, high-dimensional space, we sort the original features such that those most discriminative along the manifold are ranked highly. We show a number of pertinent use cases for our tool, including trajectory inference, spatial transcriptomics, and automatic cell classification.

AVAILABILITY AND IMPLEMENTATION

Software: https://yunwilliamyu.github.io/SlowMoMan/; Code: https://github.com/yunwilliamyu/SlowMoMan.

摘要

动机

非线性低维嵌入使人类能够可视化高维数据,这在生物信息学中经常出现,其中数据集可能有成千上万的维度。然而,将非线性嵌入的轴与原始维度相关联是一个不平凡的问题。特别是,人类可能会在嵌入中识别出模式或有趣的子部分,但无法轻易识别这些模式在原始数据中对应的是什么。

结果

因此,我们展示了SlowMoMan(流形上的慢动作),这是一个网络应用程序,允许用户在二维嵌入上绘制一维路径。然后,通过将流形反向投影到原始高维空间,我们对原始特征进行排序,使得那些在流形上最具区分性的特征排名靠前。我们展示了我们工具的一些相关用例,包括轨迹推断、空间转录组学和自动细胞分类。

可用性和实现

软件:https://yunwilliamyu.github.io/SlowMoMan/;代码:https://github.com/yunwilliamyu/SlowMoMan。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/11220466/6ecf07a2b3af/vbae095f1.jpg

相似文献

1
SlowMoMan: a web app for discovery of important features along user-drawn trajectories in 2D embeddings.
Bioinform Adv. 2024 Jun 21;4(1):vbae095. doi: 10.1093/bioadv/vbae095. eCollection 2024.
2
VeloViz: RNA velocity-informed embeddings for visualizing cellular trajectories.
Bioinformatics. 2022 Jan 3;38(2):391-396. doi: 10.1093/bioinformatics/btab653.
3
Sciviewer enables interactive visual interrogation of single-cell RNA-Seq data from the Python programming environment.
Bioinformatics. 2021 Nov 5;37(21):3961-3963. doi: 10.1093/bioinformatics/btab689.
4
Differentiable phylogenetics hyperbolic embeddings with Dodonaphy.
Bioinform Adv. 2024 Jun 19;4(1):vbae082. doi: 10.1093/bioadv/vbae082. eCollection 2024.
5
Learned protein embeddings for machine learning.
Bioinformatics. 2018 Aug 1;34(15):2642-2648. doi: 10.1093/bioinformatics/bty178.
6
Graph embedding on biomedical networks: methods, applications and evaluations.
Bioinformatics. 2020 Feb 15;36(4):1241-1251. doi: 10.1093/bioinformatics/btz718.
8
Hashing on nonlinear manifolds.
IEEE Trans Image Process. 2015 Jun;24(6):1839-51. doi: 10.1109/TIP.2015.2405340.
9
TDAview: an online visualization tool for topological data analysis.
Bioinformatics. 2020 Sep 15;36(18):4805-4809. doi: 10.1093/bioinformatics/btaa600.

本文引用的文献

1
Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model.
Genome Biol. 2019 Dec 23;20(1):295. doi: 10.1186/s13059-019-1861-6.
2
A comparison of automatic cell identification methods for single-cell RNA sequencing data.
Genome Biol. 2019 Sep 9;20(1):194. doi: 10.1186/s13059-019-1795-z.
3
A comparison of single-cell trajectory inference methods.
Nat Biotechnol. 2019 May;37(5):547-554. doi: 10.1038/s41587-019-0071-9. Epub 2019 Apr 1.
4
From Louvain to Leiden: guaranteeing well-connected communities.
Sci Rep. 2019 Mar 26;9(1):5233. doi: 10.1038/s41598-019-41695-z.
6
Dimensionality reduction for visualizing single-cell data using UMAP.
Nat Biotechnol. 2018 Dec 3. doi: 10.1038/nbt.4314.
7
Multidimensional Projection for Visual Analytics: Linking Techniques with Distortions, Tasks, and Layout Enrichment.
IEEE Trans Vis Comput Graph. 2019 Aug;25(8):2650-2673. doi: 10.1109/TVCG.2018.2846735. Epub 2018 Jun 13.
8
SCANPY: large-scale single-cell gene expression data analysis.
Genome Biol. 2018 Feb 6;19(1):15. doi: 10.1186/s13059-017-1382-0.
9
Reconstructing cell cycle and disease progression using deep learning.
Nat Commun. 2017 Sep 6;8(1):463. doi: 10.1038/s41467-017-00623-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验