Suppr超能文献

基于紫精的高阴离子传导性二维聚合物膜作为纳米发电机

Highly Anion-Conductive Viologen-Based Two-Dimensional Polymer Membranes as Nanopower Generators.

作者信息

Liu Xiaohui, Wang Zhiyong, Zhang Qixiang, Lei Dandan, Li Xiaodong, Zhang Zhen, Feng Xinliang

机构信息

Center for Advancing Electronics Dresden & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany.

Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany.

出版信息

Angew Chem Int Ed Engl. 2024 Oct 1;63(40):e202409349. doi: 10.1002/anie.202409349. Epub 2024 Aug 30.

Abstract

Two-dimensional polymers (2DPs) and their layer-stacked 2D covalent organic frameworks (2D COFs) membranes hold great potential for harvesting sustainable osmotic energy. The nascent research has yet to simultaneously achieve high ionic flux and selectivity, primarily due to inefficient ion transport dynamics. This is directly related to ultrasmall pore size (<3 nm), much smaller than the duple Debye length in the diluted electrolyte (6-20 nm), as well as low charge density (<4.5 mC m). Here, we introduce a π-conjugated viologen-based 2DP (V2DP) membrane possessing a large pore size of 4.5 nm, strategically enhancing the overlapping of the electric double layer, coupled with an exceptional positive surface charge density (~6 mC m). These characteristics enable the membrane to facilitate high anion flux while maintaining ideal selectivity. Notably, V2DP membranes realize an impressive current density of 5.5×10 A m, surpassing benchmarks set by previously reported nanofluidic membranes. In the practical application scenario involving the mixing of artificial seawater and river water, the V2DP membranes exhibit a considerable ion transference number of 0.70 towards Cl, contributing to an outstanding power density of ~55 W m. Theoretical calculations reveal the important role of the large quantity of anion transport sites, which act as binding sites evenly located in the positively charged N-containing pyridine rings. These binding sites enable kinematic coupling and decoupling between anions and the V2DP skeleton, establishing a continuous Cl ion transport pathway. This work demonstrates the great promise of large-area ultrathin 2DP membranes featuring highly organized charged ion transport networks when applied for osmotic energy conversion.

摘要

二维聚合物(2DPs)及其层状堆叠的二维共价有机框架(2D COFs)膜在收集可持续渗透能方面具有巨大潜力。新兴研究尚未同时实现高离子通量和选择性,主要原因是离子传输动力学效率低下。这直接与超小的孔径(<3 nm)有关,该孔径远小于稀释电解质中的德拜长度(6 - 20 nm),以及低电荷密度(<4.5 mC m)。在此,我们引入了一种基于π共轭紫精的2DP(V2DP)膜,其具有4.5 nm的大孔径,策略性地增强了双电层的重叠,同时具有出色的正表面电荷密度(~6 mC m)。这些特性使该膜能够在保持理想选择性的同时促进高阴离子通量。值得注意的是,V2DP膜实现了令人印象深刻的5.5×10 A m的电流密度,超过了先前报道的纳米流体膜所设定的基准。在涉及人工海水和河水混合的实际应用场景中,V2DP膜对Cl表现出相当可观的0.70的离子迁移数,有助于实现约55 W m的出色功率密度。理论计算揭示了大量阴离子传输位点的重要作用,这些位点作为均匀分布在带正电荷的含氮吡啶环中的结合位点。这些结合位点使阴离子与V2DP骨架之间能够进行运动学耦合和解耦,建立了连续的Cl离子传输途径。这项工作证明了具有高度有序的带电离子传输网络的大面积超薄2DP膜在应用于渗透能转换时具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验