James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K.
ACS Appl Bio Mater. 2024 Jul 15;7(7):4772-4784. doi: 10.1021/acsabm.4c00593. Epub 2024 Jul 4.
Textile-based wearable humidity sensors are of great interest for human healthcare monitoring as they can provide critical human-physiology information. The demand for wearable and sustainable sensing technology has significantly promoted the development of eco-friendly sensing solutions for potential real-world applications. Herein, a biodegradable cotton (textile)-based wearable humidity sensor has been developed using fabsil-treated cotton fabric coated with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) sensing layer. The structural, chemical composition, hygroscopicity, and morphological properties are examined using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), contact angle measurement, and scanning electron microscopy (SEM) analysis. The developed sensor exhibited a nearly linear response (Adj. -square value observed as 0.95035) over a broad relative humidity (RH) range from 25 to 91.5%RH displaying high sensitivity (26.1%/%RH). The sensor shows excellent reproducibility (on replica sensors with a margin of error ±1.98%) and appreciable stability/aging with time (>4.5 months), high flexibility (studied at bending angles 30°, 70°, 120°, and 150°), substantial response/recovery durations (suitable for multiple applications), and highly repeatable (multicyclic analysis) sensing performance. The prospective relevance of the developed humidity sensor toward healthcare applications is demonstrated via breathing rate monitoring (via a sensor attached to a face mask), distinguishing different breathing patterns (normal, deep, and fast), skin moisture monitoring, and neonatal care (diaper wetting). The multinode wireless connectivity is demonstrated using a Raspberry Pi Pico-based system for demonstrating the potential applicability of the developed sensor as a real-time humidity monitoring system for the healthcare sector. Further, the biodegradability analysis of the used textile is evaluated using the soil burial degradation test. The work suggests the potential applicability of the developed flexible and eco-friendly humidity sensor in wearable healthcare devices and other humidity sensing applications.
基于纺织品的可穿戴湿度传感器在人体健康监测方面具有很大的应用潜力,因为它们可以提供关键的人体生理信息。对可穿戴和可持续传感技术的需求极大地推动了环保型传感解决方案的发展,以满足潜在的实际应用需求。本文开发了一种基于可生物降解棉(纺织品)的可穿戴湿度传感器,该传感器使用经过 fabsil 处理的棉织物,表面涂覆有聚(3,4-亚乙基二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)感测层。使用 X 射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、接触角测量和扫描电子显微镜(SEM)分析来检查结构、化学成分、吸湿性和形态特性。所开发的传感器在 25 至 91.5%RH 的宽相对湿度(RH)范围内表现出近乎线性的响应(观察到的调整平方值为 0.95035),具有高灵敏度(26.1%/RH)。该传感器具有出色的重现性(在具有误差±1.98%的复制传感器上)和随时间的良好稳定性/老化(>4.5 个月)、高柔韧性(在弯曲角度为 30°、70°、120°和 150°下进行研究)、较大的响应/恢复时间(适用于多种应用)以及高度可重复(多循环分析)的传感性能。通过将传感器附着在口罩上以监测呼吸频率、区分不同的呼吸模式(正常、深呼吸和快速呼吸)、皮肤水分监测和新生儿护理(尿布湿润),展示了所开发的湿度传感器在医疗保健应用中的潜在相关性。使用基于 Raspberry Pi Pico 的系统演示了多节点无线连接,以展示所开发传感器作为实时湿度监测系统在医疗保健领域的潜在适用性。此外,还通过土壤掩埋降解试验评估了所使用纺织品的生物降解性分析。这项工作表明,所开发的灵活环保湿度传感器在可穿戴医疗设备和其他湿度传感应用中具有潜在的适用性。