Dai Luhan, Fu Yulong, Wei Mengran, Wang Fangyuan, Tian Bailin, Wang Guoqiang, Li Shuhua, Ding Mengning
Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
J Am Chem Soc. 2024 Jul 17;146(28):19019-19029. doi: 10.1021/jacs.4c03085. Epub 2024 Jul 4.
Photocatalysis has emerged as an effective tool for addressing the contemporary challenges in organic synthesis. However, the trial-and-error-based screening of feasible substrates and optimal reaction conditions remains time-consuming and potentially expensive in industrial practice. Here, we demonstrate an electrochemical-based data-acquisition approach that derives a simple set of redox-relevant electro-descriptors for effective mechanistic analysis and performance evaluation through machine learning (ML) in photocatalytic synthesis. These electro-descriptors correlate to the quantification of shifted charge transfer processes in response to the photoirradiation and enabled construction of reactivity diagram where high-yield reactive "hot zones" can reflect subtle changes of the reaction system. For the model reaction of photocatalytic deoxygenation reaction, the influence of varying carboxylic acids (substrate A, oxidation-intended) and alkenes (substrate B, reduction-intended) and varying reaction conditions on the reaction yield can be visualized, while mathematical analysis of the electro-descriptor patterns further revealed distinct mechanistic/kinetic impacts from different substrates and conditions. Additionally, in the application of ML algorithms, the experimentally derived electro-descriptors reflect an overall redox kinetic outcome contributed from vast reaction parameters, serving as a capable means to reduce the dimensionality in the case of complex multiparameter chemical space. As a result, utilization of electro-descriptors enabled efficient and robust quantitative evaluation of chemical reactivity, demonstrating promising potential of introducing operando-relevant experimental insights in the data-driven chemistry.
光催化已成为应对有机合成中当代挑战的有效工具。然而,在工业实践中,基于试错法筛选可行的底物和最佳反应条件仍然耗时且可能成本高昂。在此,我们展示了一种基于电化学的数据采集方法,该方法通过光催化合成中的机器学习(ML)得出一组简单的与氧化还原相关的电描述符,用于有效的机理分析和性能评估。这些电描述符与光照射下电荷转移过程的定量变化相关,并能够构建反应活性图,其中高产率的反应“热点区域”可以反映反应体系的细微变化。对于光催化脱氧反应的模型反应,可以直观地看到不同羧酸(底物A,预期氧化)和烯烃(底物B,预期还原)以及不同反应条件对反应产率的影响,而对电描述符模式的数学分析进一步揭示了不同底物和条件的独特机理/动力学影响。此外,在ML算法的应用中,实验得出的电描述符反映了大量反应参数共同作用的整体氧化还原动力学结果,在复杂多参数化学空间的情况下,这是一种有效的降维手段。因此,电描述符的使用实现了对化学反应活性的高效且稳健的定量评估,证明了在数据驱动化学中引入与原位相关的实验见解具有广阔的潜力。