Zhang Jia-Qi, Wang Miao, Zhang Fu-Cheng, Zhang Fang-Lue
IEEE Trans Vis Comput Graph. 2025 Sep;31(9):4923-4936. doi: 10.1109/TVCG.2024.3423426.
Motion retargeting is an active research area in computer graphics and animation, allowing for the transfer of motion from one character to another, thereby creating diverse animated character data. While this technology has numerous applications in animation, games, and movies, current methods often produce unnatural or semantically inconsistent motion when applied to characters with different shapes or joint counts. This is primarily due to a lack of consideration for the geometric and spatial relationships between the body parts of the source and target characters. To tackle this challenge, we introduce a novel spatially-preserving Skinned Motion Retargeting Network (SMRNet) capable of handling motion retargeting for characters with varying shapes and skeletal structures while maintaining semantic consistency. By learning a hybrid representation of the character's skeleton and shape in a rest pose, SMRNet transfers the rotation and root joint position of the source character's motion to the target character through embedded rest pose feature alignment. Additionally, it incorporates a differentiable loss function to further preserve the spatial consistency of body parts between the source and target. Comprehensive quantitative and qualitative evaluations demonstrate the superiority of our approach over existing alternatives, particularly in preserving spatial relationships more effectively.
运动重定向是计算机图形学和动画领域的一个活跃研究方向,它能够将一个角色的运动转移到另一个角色上,从而创建多样化的动画角色数据。虽然这项技术在动画、游戏和电影中有众多应用,但当应用于具有不同形状或关节数量的角色时,当前方法往往会产生不自然或语义不一致的运动。这主要是由于在处理源角色和目标角色身体部位之间的几何和空间关系时缺乏考虑。为应对这一挑战,我们引入了一种新颖的空间保留蒙皮运动重定向网络(SMRNet),它能够在保持语义一致性的同时,处理具有不同形状和骨骼结构的角色的运动重定向。通过在静止姿态下学习角色骨骼和形状的混合表示,SMRNet通过嵌入的静止姿态特征对齐,将源角色运动的旋转和根关节位置转移到目标角色上。此外,它还结合了一个可微损失函数,以进一步保持源角色和目标角色之间身体部位的空间一致性。全面的定量和定性评估证明了我们的方法优于现有方法,特别是在更有效地保留空间关系方面。