Dong Jie, Boukhvalov Danil W, Lv Cuncai, Humphrey Mark G, Zhang Chi, Huang Zhipeng
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering Institution, Tongji University, Shanghai, 200092, China.
College of Science, Nanjing Forestry University, Nanjing, 210037, China.
ChemSusChem. 2024 Dec 20;17(24):e202401176. doi: 10.1002/cssc.202401176. Epub 2024 Aug 26.
Due to their abundant active sites and porous structures, metal-organic frameworks (MOFs) have garnered significant interest as oxygen evolution reaction (OER) electrocatalysts. Nevertheless, the development of MOF s-based electrocatalysts with efficient OER activity and excellent stability simultaneously still face challenges. Herein, a cathodic activation strategy was used to enhance the OER electrocatalytic performance of M-HHTP for the first time, where M refers to Ni, Cu, Co, Fe, while HHTP denotes 2, 3, 6, 7, 10, 11-hexahydroxytriphenylene. As a prototype, the activated Ni-HHTP (HA-Ni-HHTP) demonstrates outstanding OER performance, with an overpotential as low as 140 mV at 20 mA cm and a small Tafel slope of 78.7 mV, surpassing commercial RuO and rivaling state-of-the-art MOFs-based electrocatalysts. Characterizations and density functional theory calculations reveal that the superior performance of HA-Ni-HHTP is primarily ascribed to changes in semiconductor type, contact angle, and oxygen vacancy content induced by cathodic activation. Electrochemical impedance spectroscopy analysis using the transmission line model confirms that cathodic activation accelerates charge transport, enhancing the OER process. Furthermore, the cathodic activation strategy holds promise for improving the water oxidation performance of other MOFs such as Fe-HHTP, Co-HHTP, and Cu-HHTP.
由于其丰富的活性位点和多孔结构,金属有机框架(MOFs)作为析氧反应(OER)电催化剂引起了广泛关注。然而,同时开发具有高效OER活性和优异稳定性的基于MOF的电催化剂仍然面临挑战。在此,首次采用阴极活化策略来提高M-HHTP的OER电催化性能,其中M代表Ni、Cu、Co、Fe,而HHTP表示2,3,6,7,10,11-六羟基三亚苯。作为原型,活化后的Ni-HHTP(HA-Ni-HHTP)表现出出色的OER性能,在20 mA cm时过电位低至140 mV,塔菲尔斜率小至78.7 mV,超过了商业RuO且可与最先进的基于MOF的电催化剂相媲美。表征和密度泛函理论计算表明,HA-Ni-HHTP的优异性能主要归因于阴极活化引起的半导体类型、接触角和氧空位含量的变化。使用传输线模型的电化学阻抗谱分析证实,阴极活化加速了电荷传输,增强了OER过程。此外,阴极活化策略有望改善其他MOF(如Fe-HHTP、Co-HHTP和Cu-HHTP)的水氧化性能。