Suppr超能文献

基于直方图分析的多参数磁共振成像在脑胶质瘤与单发脑转移瘤鉴别诊断中的应用研究。

Differentiation of glioma and solitary brain metastasis: a multi-parameter magnetic resonance imaging study using histogram analysis.

机构信息

The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi, 030012, PR China.

Provincial Key Cultivation Laboratory of Intelligent Big Data Digital Neurosurgery of Shanxi Province, Taiyuan, Shanxi, PR China.

出版信息

BMC Cancer. 2024 Jul 5;24(1):805. doi: 10.1186/s12885-024-12571-5.

Abstract

BACKGROUND

Differentiation of glioma and solitary brain metastasis (SBM), which requires biopsy or multi-disciplinary diagnosis, remains sophisticated clinically. Histogram analysis of MR diffusion or molecular imaging hasn't been fully investigated for the differentiation and may have the potential to improve it.

METHODS

A total of 65 patients with newly diagnosed glioma or metastases were enrolled. All patients underwent DWI, IVIM, and APTW, as well as the T1W, T2W, T2FLAIR, and contrast-enhanced T1W imaging. The histogram features of apparent diffusion coefficient (ADC) from DWI, slow diffusion coefficient (Dslow), perfusion fraction (frac), fast diffusion coefficient (Dfast) from IVIM, and MTRasym@3.5ppm from APTWI were extracted from the tumor parenchyma and compared between glioma and SBM. Parameters with significant differences were analyzed with the logistics regression and receiver operator curves to explore the optimal model and compare the differentiation performance.

RESULTS

Higher ADC (P = 0.022), frac (P<0.001),and frac (P<0.001) were found for glioma, while higher (MTRasym@3.5ppm) (P = 0.045), frac (P<0.001),frac (P = 0.001), frac (P<0.001), and frac (P<0.001) were observed for SBM. frac (OR = 0.431, 95%CI 0.256-0.723, P = 0.002) was independent factor for SBM differentiation. The model combining (MTRasym@3.5ppm), frac, and frac showed an AUC of 0.857 (sensitivity: 0.857, specificity: 0.750), while the model combined with frac and frac had an AUC of 0.824 (sensitivity: 0.952, specificity: 0.591). There was no statistically significant difference between AUCs from the two models. (Z = -1.14, P = 0.25).

CONCLUSIONS

The frac and frac in enhanced tumor region could be used to differentiate glioma and SBM and (MTRasym@3.5ppm) helps improving the differentiation specificity.

摘要

背景

鉴别胶质瘤和单发脑转移瘤(SBM)需要进行活检或多学科诊断,这在临床上仍然很复杂。MR 扩散或分子成像的直方图分析尚未得到充分研究,但其可能具有改善鉴别诊断的潜力。

方法

共纳入 65 例新诊断为胶质瘤或转移瘤的患者。所有患者均行 DWI、IVIM、APT-W 及 T1W、T2W、T2FLAIR、增强 T1W 成像。从肿瘤实质中提取 DWI 的表观扩散系数(ADC)、慢扩散系数(Dslow)、灌注分数(frac)、IVIM 的快扩散系数(Dfast)以及 APTWI 的 MTRasym@3.5ppm 的直方图特征,并比较胶质瘤和 SBM 之间的差异。对有显著差异的参数进行逻辑回归和受试者工作特征曲线分析,以探讨最佳模型并比较鉴别性能。

结果

与 SBM 相比,胶质瘤的 ADC(P=0.022)、frac(P<0.001)和 frac(P<0.001)更高,而 SBM 的(MTRasym@3.5ppm)(P=0.045)、frac(P<0.001)、frac(P=0.001)、frac(P<0.001)和 frac(P<0.001)更高。frac(OR=0.431,95%CI 0.256-0.723,P=0.002)是 SBM 鉴别诊断的独立因素。联合(MTRasym@3.5ppm)、frac 和 frac 的模型 AUC 为 0.857(敏感性:0.857,特异性:0.750),而联合 frac 和 frac 的模型 AUC 为 0.824(敏感性:0.952,特异性:0.591)。两个模型的 AUC 之间无统计学差异(Z=-1.14,P=0.25)。

结论

增强肿瘤区域的 frac 和 frac 可用于鉴别胶质瘤和 SBM,(MTRasym@3.5ppm)有助于提高鉴别诊断的特异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验