School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China.
College of Environment and Resources, College of Carbon Neutral, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China.
Water Res. 2024 Sep 1;261:121992. doi: 10.1016/j.watres.2024.121992. Epub 2024 Jun 22.
Electroactive biofilm (EAB) has garnered significant attention due to its effectiveness in pollutant remediation, electricity generation, and chemical synthesis. However, achieving precise control over the rapid formation of EAB presents challenges for the practical implementation of bioelectrochemical technology. In this study, we investigated the regulation of EAB formation by manipulating applied electric potential. We developed a modified XDLVO model for the applied electric field and quantitatively assessed the feasibility of existing rapid formation strategies for EAB. Our results revealed that electrostatic (EL) force significantly influenced EAB formation in the presence of the applied electric field, with the potential difference between the electrode and the microbial solution being the primary determinant of EL force. Compared to -0.2 V and 0 V vs.Ag/AgCl, EAB exhibited the highest electrochemical performance at 0.2 V vs.Ag/AgCl, with a maximum current density of 6.044 ± 0.10 A/m, surpassing that at -0.2 V vs.Ag/AgCl and 0 V vs.Ag/AgCl by 1.73 times and 1.31 times, respectively. Furthermore, EAB demonstrated the highest biomass accumulation, measuring a thickness of 25 ± 2 μm at 0.2 V vs. Ag/AgCl, representing increases of 1.67 and 1.25 times compared to -0.2 V vs.Ag/AgCl and 0 V vs.Ag/AgCl, respectively. The strong electrostatic attraction under the anodic potential promoted the formation of a monolayer of biofilm. Additionally, the hydrophilicity and hydrophobicity of the biofilm were altered following inversion culture. The Lewis acid-base (AB) attraction offset the electrostatic repulsion caused by negative charges, it is beneficial for the formation of biofilms. This study, for the first time, elucidated the difference in the formation of cathode and anode biofilm from a thermodynamic perspective in the context of electric field introduction, laying the theoretical foundation for the directional regulation of the rapid formation of typical electroactive biofilms.
电活性生物膜(EAB)因其在污染物修复、发电和化学合成方面的有效性而受到广泛关注。然而,精确控制 EAB 的快速形成对于生物电化学技术的实际应用提出了挑战。在这项研究中,我们通过操纵施加的电势来研究 EAB 的形成调控。我们开发了一个用于施加电场的改进 XDLVO 模型,并定量评估了现有 EAB 快速形成策略的可行性。我们的结果表明,静电(EL)力在施加电场的情况下对 EAB 的形成有显著影响,电极和微生物溶液之间的电位差是 EL 力的主要决定因素。与-0.2 V 和 0 V 相比,EAB 在 0.2 V 时表现出最高的电化学性能,最大电流密度为 6.044±0.10 A/m,分别比-0.2 V 和 0 V 高 1.73 倍和 1.31 倍。此外,EAB 表现出最高的生物量积累,在 0.2 V 时达到 25±2 μm 的厚度,比-0.2 V 和 0 V 分别增加了 1.67 倍和 1.25 倍。此外,在阳极电势下,强烈的静电吸引促进了生物膜单层的形成。此外,反转培养后,生物膜的亲水性和疏水性发生了改变。路易斯酸碱(AB)吸引力抵消了负电荷引起的静电排斥,有利于生物膜的形成。这项研究首次从热力学角度阐明了电场引入时阴极和阳极生物膜形成的差异,为典型电活性生物膜的快速形成的定向调控奠定了理论基础。
Sci Total Environ. 2023-7-15
Biosens Bioelectron. 2024-1-15
Bioelectrochemistry. 2012-5-12
Colloids Surf B Biointerfaces. 2014-5-1
Biotechnol Bioeng. 2008-8-1
Environ Sci Technol. 2023-4-18