Hu Leiqing, Lee Won-Il, Roy Soumyabrata, Subramanian Ashwanth, Kisslinger Kim, Zhu Lingxiang, Fan Shouhong, Hwang Sooyeon, Bui Vinh T, Tran Thien, Zhang Gengyi, Ding Yifu, Ajayan Pulickel M, Nam Chang-Yong, Lin Haiqing
Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA.
Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, USA.
Nat Commun. 2024 Jul 7;15(1):5688. doi: 10.1038/s41467-024-49961-z.
Hierarchically porous materials containing sub-nm ultramicropores with molecular sieving abilities and microcavities with high gas diffusivity may realize energy-efficient membranes for gas separations. However, rationally designing and constructing such pores into large-area membranes enabling efficient H separations remains challenging. Here, we report the synthesis and utilization of hybrid carbon molecular sieve membranes with well-controlled nano- and micro-pores and single zinc atoms and clusters well-dispersed inside the nanopores via the carbonization of supramolecular mixed matrix materials containing amorphous and crystalline zeolitic imidazolate frameworks. Carbonization temperature is used to fine-tune pore sizes, achieving ultrahigh selectivity for H/CO (130), H/CH (2900), H/N (880), and H/CH (7900) with stability against water vapor and physical aging during a continuous 120-h test.
具有分子筛分能力的亚纳米级超微孔和高气体扩散率微腔的分级多孔材料,有望实现用于气体分离的节能膜。然而,合理设计并将此类孔隙构建到能够实现高效H分离的大面积膜中仍具有挑战性。在此,我们报道了通过对包含无定形和结晶沸石咪唑框架的超分子混合基质材料进行碳化,合成并利用具有可控纳米和微孔以及单锌原子和簇均匀分散在纳米孔内的混合碳分子筛膜。碳化温度用于微调孔径,在连续120小时的测试中,实现了对H/CO(130)、H/CH(2900)、H/N(880)和H/CH(7900)的超高选择性,且对水蒸气和物理老化具有稳定性。