Universidad de Burgos, Departamento de Química, Facultad de Ciencias, Plaza Misael Bañuelos S/n, 09001, Burgos, Spain.
Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003, Girona, Spain.
Eur J Med Chem. 2024 Oct 5;276:116618. doi: 10.1016/j.ejmech.2024.116618. Epub 2024 Jun 28.
Ir(III) and Ru(II) polypyridyl complexes are promising photosensitizers (PSs) for photodynamic therapy (PDT) due to their outstanding photophysical properties. Herein, one series of cyclometallated Ir(III) complexes and two series of Ru(II) polypyridyl derivatives bearing three different thiazolyl-β-carboline N^N' ligands have been synthesized, aiming to evaluate the impact of the different metal fragments ([Ir(C^N)] or [Ru(N^N)]) and N^N' ligands on the photophysical and biological properties. All the compounds exhibit remarkable photostability under blue-light irradiation and are emissive (605 < λ < 720 nm), with the Ru(II) derivatives displaying higher photoluminescence quantum yields and longer excited state lifetimes. The Ir PSs display pK values between 5.9 and 7.9, whereas their Ru counterparts are less acidic (pK > 9.3). The presence of the deprotonated form in the Ir-PSs favours the generation of reactive oxygen species (ROS) since, according to theoretical calculations, it features a low-lying ligand-centered triplet excited state (T = LC) with a long lifetime. All compounds have demonstrated anticancer activity. Ir(III) complexes 1-3 exhibit the highest cytotoxicity in dark conditions, comparable to cisplatin. Their activity is notably enhanced by blue-light irradiation, resulting in nanomolar IC values and phototoxicity indexes (PIs) between 70 and 201 in different cancer cell lines. The Ir(III) PSs are also activated by green (with PI between 16 and 19.2) and red light in the case of complex 3 (PI = 8.5). Their antitumor efficacy is confirmed by clonogenic assays and using spheroid models. The Ir(III) complexes rapidly enter cells, accumulating in mitochondria and lysosomes. Upon photoactivation, they generate ROS, leading to mitochondrial dysfunction and lysosomal damage and ultimately cell apoptosis. Additionally, they inhibit cancer cell migration, a crucial step in metastasis. In contrast, Ru(II) complex 6 exhibits moderate mitochondrial activity. Overall, Ir(III) complexes 1-3 show potential for selective light-controlled cancer treatment, providing an alternative mechanism to chemotherapy and the ability to inhibit lethal cancer cell dissemination.
铱(III)和钌(II)金属多吡啶配合物由于其出色的光物理性质,是很有前途的光动力治疗(PDT)光敏剂(PSs)。在此,我们合成了一系列环金属化铱(III)配合物和两个系列带有三种不同噻唑基-β-咔啉 N^N'配体的钌(II)多吡啶衍生物,旨在评估不同金属片段([Ir(C^N)]或[Ru(N^N)])和 N^N'配体对光物理和生物性质的影响。所有化合物在蓝光照射下都表现出显著的光稳定性,且具有发光性(605<λ<720nm),其中钌(II)衍生物具有更高的光致发光量子产率和更长的激发态寿命。铱 PSs 的 pK 值在 5.9 到 7.9 之间,而它们的钌对应物的酸度较低(pK>9.3)。在铱 PSs 中,去质子形式的存在有利于活性氧物质(ROS)的生成,因为根据理论计算,它具有一个低能的配体中心三重态激发态(T=LC),具有长寿命。所有化合物都表现出抗癌活性。在黑暗条件下,铱(III)配合物 1-3 表现出最高的细胞毒性,与顺铂相当。在蓝光照射下,它们的活性显著增强,在不同的癌细胞系中,纳米摩尔 IC 值和光毒性指数(PI)在 70 到 201 之间。在第三种情况下,铱(III) PSs 也可以被绿光(PI 在 16 到 19.2 之间)和红光激活。它们的抗肿瘤功效通过集落形成实验和使用球体模型得到了证实。铱(III)配合物迅速进入细胞,在细胞内积累在线粒体和溶酶体中。在光激活后,它们产生 ROS,导致线粒体功能障碍和溶酶体损伤,最终导致细胞凋亡。此外,它们还能抑制癌细胞迁移,这是转移的关键步骤。相比之下,钌(II)配合物 6 对线粒体的活性适中。总的来说,铱(III)配合物 1-3 具有选择性光控癌症治疗的潜力,为化疗提供了一种替代机制,并能够抑制致命癌细胞的扩散。