Suppr超能文献

人工智能在家族性高胆固醇血症中的应用潜力:在筛查、诊断和风险分层方面的进展,以实现早期干预和治疗。

Potentials of artificial intelligence in familial hypercholesterolemia: Advances in screening, diagnosis, and risk stratification for early intervention and treatment.

机构信息

Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.

出版信息

Int J Cardiol. 2024 Oct 1;412:132315. doi: 10.1016/j.ijcard.2024.132315. Epub 2024 Jul 6.

Abstract

Familial hypercholesterolemia (FH) poses a global health challenge due to high incidence rates and underdiagnosis, leading to increased risks of early-onset atherosclerosis and cardiovascular diseases. Early detection and treatment of FH is critical in reducing the risk of cardiovascular events and improving the long-term outcomes and quality of life for affected individuals and their families. Traditional therapeutic approaches revolve around lipid-lowering interventions, yet challenges persist, particularly in accurate and timely diagnosis. The current diagnostic landscape heavily relies on genetic testing of specific LDL-C metabolism genes, often limited to specialized centers. This constraint has led to the adoption of alternative clinical scores for FH diagnosis. However, the rapid advancements in artificial intelligence (AI) and machine learning (ML) present promising solutions to these diagnostic challenges. This review explores the intricacies of FH, highlighting the challenges that are encountered in the diagnosis and management of the disorder. The revolutionary potential of ML, particularly in large-scale population screening, is highlighted. Applications of ML in FH screening, diagnosis, and risk stratification are discussed, showcasing its ability to outperform traditional criteria. However, challenges and ethical considerations, including algorithmic stability, data quality, privacy, and consent issues, are crucial areas that require attention. The review concludes by emphasizing the significant promise of AI and ML in FH management while underscoring the need for ethical and practical vigilance to ensure responsible and effective integration into healthcare practices.

摘要

家族性高胆固醇血症(FH)由于发病率高和漏诊率高,对全球健康构成挑战,导致早发动脉粥样硬化和心血管疾病风险增加。FH 的早期发现和治疗对于降低心血管事件风险、改善受影响个体及其家庭的长期预后和生活质量至关重要。传统的治疗方法主要围绕降脂干预,但仍存在挑战,特别是在准确和及时的诊断方面。目前的诊断方法主要依赖于特定 LDL-C 代谢基因的遗传检测,通常限于专门的中心。这种限制导致了采用替代的 FH 诊断临床评分。然而,人工智能(AI)和机器学习(ML)的快速发展为这些诊断挑战提供了有前途的解决方案。本综述探讨了 FH 的复杂性,强调了在 FH 的诊断和管理中遇到的挑战。重点介绍了 ML 在大规模人群筛查中的革命性潜力。讨论了 ML 在 FH 筛查、诊断和风险分层中的应用,展示了其优于传统标准的能力。然而,算法稳定性、数据质量、隐私和同意问题等挑战和伦理考虑因素是需要关注的关键领域。该综述最后强调了 AI 和 ML 在 FH 管理中的重要意义,同时强调需要在伦理和实践方面保持警惕,以确保负责任和有效的将其纳入医疗保健实践。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验