Suppr超能文献

揭示一种新型二维半导体:基于联苯撑的氮化铟。

Unveiling a New 2D Semiconductor: Biphenylene-Based InN.

作者信息

Laranjeira José A S, Martins Nicolas, Denis Pablo A, Sambrano Julio

机构信息

Modeling and Molecular Simulation Group, School of Sciences, São Paulo State University (UNESP), Bauru 17033-360, Brazil.

Computational Nanotechnology, DETEMA, Facultad de Química, UDELAR, CC 1157, 11800 Montevideo, Uruguay.

出版信息

ACS Omega. 2024 Jun 24;9(26):28879-28887. doi: 10.1021/acsomega.4c03511. eCollection 2024 Jul 2.

Abstract

The two-dimensional (2D) materials class earned a boost in 2021 with biphenylene synthesis, which is structurally formed by the fusion of four-, six-, and eight-membered carbon rings, usually named 4-6-8-biphenylene network (BPN). This research proposes a detailed study of electronic, structural, dynamic, and mechanical properties to demonstrate the potential of the novel biphenylene-like indium nitride (BPN-InN) via density functional theory and molecular dynamics simulations. The BPN-InN has a direct band gap energy transition of 2.02 eV, making it promising for optoelectronic applications. This structure exhibits maximum and minimum Young modulus of 22.716 and 22.063 N/m, Poisson ratio of 0.018 and -0.008, and Shear modulus of 11.448 and 10.860 N/m, respectively. To understand the BPN-InN behavior when subjected to mechanical deformations, biaxial and uniaxial strains in armchair and zigzag directions from -8 to 8% were applied, achieving a band gap energy modulation of 1.36 eV over tensile deformations. Our findings are expected to motivate both theorists and experimentalists to study and obtain these new 2D inorganic materials that exhibit promising semiconductor properties.

摘要

二维(2D)材料类别在2021年因联亚苯基的合成而得到推动,联亚苯基在结构上由四元、六元和八元碳环融合形成,通常称为4-6-8-联亚苯基网络(BPN)。本研究通过密度泛函理论和分子动力学模拟,对联亚苯基类氮化铟(BPN-InN)的电子、结构、动力学和力学性能进行了详细研究,以证明其潜力。BPN-InN具有2.02 eV的直接带隙能量跃迁,使其在光电子应用方面具有前景。该结构的最大和最小杨氏模量分别为22.716和22.063 N/m,泊松比为0.018和-0.008,剪切模量分别为11.448和10.860 N/m。为了了解BPN-InN在机械变形时的行为,在扶手椅和锯齿方向上施加了从-8%到8%的双轴和单轴应变,在拉伸变形过程中实现了1.36 eV的带隙能量调制。我们的研究结果有望激励理论家和实验家去研究和获得这些具有前景的半导体特性的新型二维无机材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d244/11223256/6128abeb331f/ao4c03511_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验