Carnamucio Federica, Foti Claudia, Micale Nicola, Van Pelt Natascha, Matheeussen An, Caljon Guy, Giuffrè Ottavia
Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23284, United States.
Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
ACS Omega. 2024 Jun 24;9(26):29000-29008. doi: 10.1021/acsomega.4c04166. eCollection 2024 Jul 2.
Metronidazole (2-methyl-5-nitro-1-imidazole-1-ethanol, MNZ) is a well-known and widely used drug for its excellent activity against various anaerobic bacteria and protozoa. The purpose of this study is to elucidate the ability of MNZ to form metal complexes with Cu and Zn and to demonstrate that complexation increases its bioactivity profile against different pathogenic microorganisms. The interaction of MNZ with Cu and Zn was investigated in NaCl aqueous solution under different conditions of temperature (15, 25, and 37 °C) and ionic strength (0.15, 0.5, and 1 mol L) by potentiometric and spectrophotometric titrations. The obtained speciation models include two species for the Cu-containing system, namely, CuL and CuL, and three species for the Zn-containing system, namely, ZnLH, ZnL, and ZnLOH. The formation constants of the species were calculated and their dependence on temperature and ionic strength evaluated. Comparison of the sequestering ability of MNZ under physiological conditions revealed a capacity toward Cu higher than that toward Zn. A simulation under the same conditions also showed a significant percentage of the Cu-MNZ species. The biological assessments highlighted that the complexation of MNZ with Cu has a relevant impact on the potency of the drug against two spp. (i.e., and ) and one gram-(-) bacterial species (i.e., ). It is noteworthy that the increased potency upon complexation with Cu did not result in cytotoxicity against MRC-5 human fetal lung fibroblasts and primary peritoneal mouse macrophages.
甲硝唑(2-甲基-5-硝基-1-咪唑-1-乙醇,MNZ)是一种广为人知且广泛使用的药物,因其对多种厌氧菌和原生动物具有出色的活性。本研究的目的是阐明MNZ与铜和锌形成金属络合物的能力,并证明络合作用可增强其对不同致病微生物的生物活性。通过电位滴定法和分光光度滴定法,在不同温度(15、25和37°C)和离子强度(0.15、0.5和1 mol/L)的NaCl水溶液中研究了MNZ与铜和锌的相互作用。所获得的物种形成模型包括含铜体系的两种物种,即CuL和CuL,以及含锌体系的三种物种,即ZnLH、ZnL和ZnLOH。计算了这些物种的形成常数,并评估了它们对温度和离子强度的依赖性。在生理条件下对MNZ螯合能力的比较表明,其对铜的螯合能力高于对锌的螯合能力。在相同条件下的模拟还显示,Cu-MNZ物种的比例很高。生物学评估强调,MNZ与铜的络合对该药物对两种物种(即 和 )和一种革兰氏阴性细菌物种(即 )的效力有显著影响。值得注意的是,与铜络合后效力的提高并未导致对MRC-5人胚肺成纤维细胞和原代腹膜小鼠巨噬细胞的细胞毒性。
Environ Sci Process Impacts. 2020-8-19
ACS Environ Au. 2025-5-12
ACS Appl Mater Interfaces. 2024-10-23
Molecules. 2023-6-30