Dhungel Sajina, Xiao Michael, Rajesh Rajaian Pushpabai, Kikani Chintan
Department of Biology, University of Kentucky, Lexington, Kentucky 40502, USA.
bioRxiv. 2024 Jun 28:2024.06.28.599394. doi: 10.1101/2024.06.28.599394.
The Per-Arnt-Sim (PAS) domains are characterized by diverse sequences and feature tandemly arranged PAS and PAS-associated C-terminal (PAC) motifs that fold seamlessly to generate the metabolite-sensing PAS domain. Here, using evolutionary scale sequence, domain mapping, and deep learning-based protein structure analysis, we deconstructed the sequence-structure relationship to unearth a novel example of signal-regulated assembly of PAS and PAC subdomains in metazoan PAS domain-regulated kinase (PASK). By comparing protein sequence, domain architecture, and computational protein models between fish, bird, and mammalian PASK orthologs, we propose the existence of previously unrecognized third PAS domain of PASK (PAS-C) formed through long-range intramolecular interactions between the N-terminal PAS fold and the C-terminal PAC fold. We experimentally validated this novel structural design using residue-level cross-linking assays and showed that the PAS-C domain assembly is nutrient-responsive. Furthermore, by combining structural phylogeny approaches with residue-level cross-linking, we revealed that the PAS-C domain assembly links nutrient sensing with quaternary structure reorganization in PASK, stabilizing the kinase catalytic core of PASK. Thus, PAS-C domain assembly likely integrates environmental signals, thereby relaying sensory information for catalytic control of the PASK kinase domain. In conclusion, we theorize that during their horizontal transfer from bacteria to multicellular organisms, PAS domains gained the capacity to integrate environmental signals through dynamic modulation of PAS and PAC motif interaction, adding a new regulatory layer suited for multicellular systems. We propose that metazoan PAS domains are likely to be more dynamic in integrating sensory information than previously considered, and their structural assembly could be targeted by regulatory signals and exploited to develop therapeutic strategies.
Per-Arnt-Sim(PAS)结构域的特点是序列多样,具有串联排列的PAS和与PAS相关的C端(PAC)基序,这些基序能无缝折叠以生成代谢物感应PAS结构域。在此,我们利用进化尺度序列、结构域映射和基于深度学习的蛋白质结构分析,解构了序列-结构关系,以发掘后生动物PAS结构域调控激酶(PASK)中PAS和PAC亚结构域信号调控组装的一个新例子。通过比较鱼类、鸟类和哺乳动物PASK直系同源物之间的蛋白质序列、结构域架构和计算蛋白质模型,我们提出存在一个此前未被识别的PASK的第三个PAS结构域(PAS-C),它是通过N端PAS折叠和C端PAC折叠之间的长程分子内相互作用形成的。我们使用残基水平交联试验对这种新的结构设计进行了实验验证,并表明PAS-C结构域组装对营养物质有响应。此外,通过将结构系统发育方法与残基水平交联相结合,我们揭示了PAS-C结构域组装将营养物质感应与PASK中的四级结构重组联系起来,稳定了PASK的激酶催化核心。因此,PAS-C结构域组装可能整合环境信号,从而传递感官信息以催化控制PASK激酶结构域。总之,我们推测在从细菌水平转移到多细胞生物的过程中,PAS结构域通过动态调节PAS和PAC基序相互作用获得了整合环境信号的能力,增加了一个适合多细胞系统的新调控层。我们提出后生动物PAS结构域在整合感官信息方面可能比之前认为的更具动态性,其结构组装可能受到调控信号的靶向作用,并可用于开发治疗策略。