Suppr超能文献

细胞中液-液相分离的粗粒度建模:挑战与机遇

Coarse-Grained Modeling of Liquid-Liquid Phase Separation in Cells: Challenges and Opportunities.

作者信息

Shi Shaokang, Zhao Li, Lu Zhong-Yuan

机构信息

College of Chemistry, Jilin University, Changchun 130012, China.

School of Life Sciences, Jilin University, Changchun 130012, China.

出版信息

J Phys Chem Lett. 2024 Jul 18;15(28):7280-7287. doi: 10.1021/acs.jpclett.4c01261. Epub 2024 Jul 9.

Abstract

Liquid-liquid phase separation (LLPS) within cells gives rise to membraneless organelles, which play pivotal roles in numerous cellular functions. A comprehensive understanding of the functional aspects of intrinsically disordered protein (IDP) condensates necessitates elucidating their inherent structures and establishing correlations with biological functions. Coarse-grained (CG) molecular dynamics (MD) simulations present a promising avenue for gaining insights into LLPS mechanisms of biomacromolecules. Essential to this endeavor is the development of tailored CG force fields for MD simulations, incorporating the full spectrum of biomolecules involved in the formation of condensates and accounting for real-time biochemical reactions coupled to the LLPS. Moreover, developing accurate theoretical frameworks and establishing links between condensate structure and its function are imperative for a thorough comprehension of LLPS of biological systems.

摘要

细胞内的液-液相分离(LLPS)产生了无膜细胞器,其在众多细胞功能中发挥着关键作用。要全面了解内在无序蛋白(IDP)凝聚物的功能,就必须阐明其固有结构并建立与生物学功能的关联。粗粒度(CG)分子动力学(MD)模拟为深入了解生物大分子的LLPS机制提供了一条有前景的途径。为此,开发用于MD模拟的定制CG力场至关重要,该力场要纳入凝聚物形成过程中涉及的全谱生物分子,并考虑与LLPS耦合的实时生化反应。此外,开发准确的理论框架并建立凝聚物结构与其功能之间的联系,对于全面理解生物系统的LLPS是必不可少的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验