文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

运用网络药理学和分子对接技术探索五倍饮治疗增生性瘢痕的潜在机制。

Exploring the potential mechanism of WuFuYin against hypertrophic scar using network pharmacology and molecular docking.

作者信息

Zhang Shu-Yang, Guo Song-Xue, Chen Lei-Lei, Zhu Jia-Yan, Hou Ming-Sheng, Lu Jia-Ke, Shen Xue-Xiang

机构信息

Department of General Surgery, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing 312000, Zhejiang Province, China.

Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China.

出版信息

World J Clin Cases. 2024 Jun 26;12(18):3505-3514. doi: 10.12998/wjcc.v12.i18.3505.


DOI:10.12998/wjcc.v12.i18.3505
PMID:38983404
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11229930/
Abstract

BACKGROUND: Hypertrophic scar (HTS) is dermal fibroproliferative disorder, which may cause physiological and psychological problems. Currently, the potential mechanism of WuFuYin (WFY) in the treatment of HTS remained to be elucidated. AIM: To explore the potential mechanism of WFY in treating HTS. METHODS: Active components and corresponding targets were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. HTS-related genes were obtained from the GeneCards, DisGeNET, and National Center for Biotechnology Information. The function of targets was analyzed by performing Gene Ontology and Kyoto Encyclopaedia of Genes and Genome (KEGG) enrichment analysis. A protein + IBM-protein interaction (PPI) network was developed using STRING database and Cytoscape. To confirm the high affinity between compounds and targets, molecular docking was performed. RESULTS: A total of 65 core genes, which were both related to compounds and HTS, were selected from multiple databases. PPI analysis showed that , , , , glycogen synthase kinase 3 beta (), , , and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma () were the hub targets and MOL004941, MOL004935, MOL004866, MOL004993, and MOL004989 were the key compounds of WFY against HTS. The results of KEGG enrichment analysis demonstrated that the function of most genes were enriched in the PI3K-Akt pathway. Moreover, by performing molecular docking, we confirmed that and 8-prenylated eriodictyol shared the highest affinity. CONCLUSION: The current findings showed that the and cyclin dependent kinase 2 were the potential targets and MOL004941, MOL004989, and MOL004993 were the main compounds of WFY in HTS treatment.

摘要

背景:增生性瘢痕(HTS)是一种真皮纤维增生性疾病,可导致生理和心理问题。目前,五倍子饮(WFY)治疗HTS的潜在机制仍有待阐明。 目的:探讨WFY治疗HTS的潜在机制。 方法:从中药系统药理学数据库及分析平台检索活性成分及相应靶点。从基因卡片、疾病基因数据库(DisGeNET)和美国国立生物技术信息中心获取HTS相关基因。通过基因本体论(Gene Ontology)和京都基因与基因组百科全书(KEGG)富集分析对靶点功能进行分析。利用STRING数据库和Cytoscape构建蛋白质-蛋白质相互作用(PPI)网络。为证实化合物与靶点之间的高亲和力,进行分子对接。 结果:从多个数据库中筛选出65个与化合物和HTS均相关的核心基因。PPI分析表明,[此处原文缺失具体基因名称]、糖原合酶激酶3β([此处原文缺失具体基因名称])、磷脂酰肌醇-4,5-二磷酸3-激酶催化亚基γ([此处原文缺失具体基因名称])是核心靶点,MOL004941、MOL004935、MOL004866、MOL004993和MOL004989是WFY抗HTS的关键化合物。KEGG富集分析结果表明,大多数基因的功能富集于PI3K-Akt信号通路。此外,通过分子对接,我们证实[此处原文缺失具体化合物名称]与8-异戊烯基圣草酚具有最高亲和力。 结论:目前的研究结果表明,[此处原文缺失具体基因名称]和细胞周期蛋白依赖性激酶2是潜在靶点,MOL004941、MOL004989和MOL004993是WFY治疗HTS的主要化合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b718/11229930/b0d95832f9b3/WJCC-12-3505-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b718/11229930/b352938be943/WJCC-12-3505-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b718/11229930/51520de42dd9/WJCC-12-3505-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b718/11229930/549effd83523/WJCC-12-3505-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b718/11229930/a640779e4026/WJCC-12-3505-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b718/11229930/0ca00138fecc/WJCC-12-3505-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b718/11229930/b0d95832f9b3/WJCC-12-3505-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b718/11229930/b352938be943/WJCC-12-3505-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b718/11229930/51520de42dd9/WJCC-12-3505-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b718/11229930/549effd83523/WJCC-12-3505-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b718/11229930/a640779e4026/WJCC-12-3505-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b718/11229930/0ca00138fecc/WJCC-12-3505-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b718/11229930/b0d95832f9b3/WJCC-12-3505-g006.jpg

相似文献

[1]
Exploring the potential mechanism of WuFuYin against hypertrophic scar using network pharmacology and molecular docking.

World J Clin Cases. 2024-6-26

[2]
Integration of Network Pharmacology and Molecular Docking Technology Reveals the Mechanism of the Therapeutic Effect of Xixin Decoction on Alzheimer's Disease.

Comb Chem High Throughput Screen. 2022

[3]
Research on the Regulatory Mechanism of Ginseng on the Tumor Microenvironment of Colorectal Cancer based on Network Pharmacology and Bioinformatics Validation.

Curr Comput Aided Drug Des. 2024

[4]
Network pharmacology and experimental verification of the potential mechanism of Er-Xian decoction in aplastic anemia.

Sci Rep. 2023-10-13

[5]
Exploring active ingredients and mechanisms of Coptidis Rhizoma-ginger against colon cancer using network pharmacology and molecular docking.

Technol Health Care. 2024

[6]
Understanding apoptotic induction by Sargentodoxa cuneata-Patrinia villosa herb pair via PI3K/AKT/mTOR signalling in colorectal cancer cells using network pharmacology and cellular studies.

J Ethnopharmacol. 2024-1-30

[7]
Exploring Acori Tatarinowii Rhizoma and Polygalae Radix in Alzheimer's: Network pharmacology and molecular docking analysis.

Medicine (Baltimore). 2024-4-12

[8]
Exploring the pharmacological mechanisms of against diabetic kidney disease using network pharmacology and molecular docking.

Heliyon. 2023-6-21

[9]
Pharmacodynamics and pharmacological mechanism of Moluodan concentrated pill in the treatment of atrophic gastritis: A network pharmacological study and in vivo experiments.

J Ethnopharmacol. 2024-1-10

[10]
Exploring the Mechanisms of Self-made Kuiyu Pingchang Recipe for the Treatment of Ulcerative Colitis and Irritable Bowel Syndrome using a Network Pharmacology-based Approach and Molecular Docking.

Curr Comput Aided Drug Des. 2024

本文引用的文献

[1]
Identification of PIK3CG as a hub in septic myocardial injury using network pharmacology and weighted gene co-expression network analysis.

Bioeng Transl Med. 2022-8-3

[2]
The Role of Local Inflammation and Hypoxia in the Formation of Hypertrophic Scars-A New Model in the Duroc Pig.

Int J Mol Sci. 2022-12-24

[3]
A novel lncRNA FPASL regulates fibroblast proliferation via the PI3K/AKT and MAPK signaling pathways in hypertrophic scar.

Acta Biochim Biophys Sin (Shanghai). 2022-9-25

[4]
KLF4 Alleviates Hypertrophic Scar Fibrosis by Directly Activating BMP4 Transcription.

Int J Biol Sci. 2022

[5]
The licorice flavonoid isoliquiritigenin attenuates Mycobacterium tuberculosis-induced inflammation through Notch1/NF-κB and MAPK signaling pathways.

J Ethnopharmacol. 2022-8-10

[6]
Glycogen Synthase Kinase 3β Involvement in Neuroinflammation and Neurodegenerative Diseases.

Curr Med Chem. 2022

[7]
Ginseng root extract attenuates inflammation by inhibiting the MAPK/NF-κB signaling pathway and activating autophagy and p62-Nrf2-Keap1 signaling in vitro and in vivo.

J Ethnopharmacol. 2022-1-30

[8]
Strategies to Overcome Failures in T-Cell Immunotherapies by Targeting PI3K-δ and -γ.

Front Immunol. 2021

[9]
Polysaccharide of Atractylodes macrocephala Koidz regulates LPS-mediated mouse hepatitis through the TLR4-MyD88-NFκB signaling pathway.

Int Immunopharmacol. 2021-9

[10]
Glycogen Synthase Kinase 3β Modulates the Inflammatory Response Activated by Bacteria, Viruses, and Parasites.

Front Immunol. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索