Suppr超能文献

揭示重症监护病房获得性肌无力的重大风险因素:推进预防性护理。

Unveiling significant risk factors for intensive care unit-acquired weakness: Advancing preventive care.

作者信息

Cheng Chun-Yao, Hao Wen-Rui, Cheng Tzu-Hurng

机构信息

Department of Medical Education, National Taiwan University Hospital, Taipei 100225, Taiwan.

Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei 23561, Taiwan.

出版信息

World J Clin Cases. 2024 Jun 26;12(18):3288-3290. doi: 10.12998/wjcc.v12.i18.3288.

Abstract

In this editorial, we discuss an article titled, "Significant risk factors for intensive care unit-acquired weakness: A processing strategy based on repeated machine learning," published in a recent issue of the . Intensive care unit-acquired weakness (ICU-AW) is a debilitating condition that affects critically ill patients, with significant implications for patient outcomes and their quality of life. This study explored the use of artificial intelligence and machine learning techniques to predict ICU-AW occurrence and identify key risk factors. Data from a cohort of 1063 adult intensive care unit (ICU) patients were analyzed, with a particular emphasis on variables such as duration of ICU stay, duration of mechanical ventilation, doses of sedatives and vasopressors, and underlying comorbidities. A multilayer perceptron neural network model was developed, which exhibited a remarkable impressive prediction accuracy of 86.2% on the training set and 85.5% on the test set. The study highlights the importance of early prediction and intervention in mitigating ICU-AW risk and improving patient outcomes.

摘要

在这篇社论中,我们讨论了一篇题为《重症监护病房获得性肌无力的重要风险因素:基于重复机器学习的处理策略》的文章,该文章发表在最近一期的《 》上。重症监护病房获得性肌无力(ICU-AW)是一种使重症患者衰弱的病症,对患者的预后及其生活质量有重大影响。本研究探索了使用人工智能和机器学习技术来预测ICU-AW的发生并识别关键风险因素。对1063名成年重症监护病房(ICU)患者的队列数据进行了分析,特别关注了诸如ICU住院时间、机械通气时间、镇静剂和血管加压药的剂量以及潜在合并症等变量。开发了一个多层感知器神经网络模型,该模型在训练集上的预测准确率高达86.2%,在测试集上为85.5%,令人印象深刻。该研究强调了早期预测和干预对于降低ICU-AW风险及改善患者预后的重要性。

相似文献

1
Unveiling significant risk factors for intensive care unit-acquired weakness: Advancing preventive care.
World J Clin Cases. 2024 Jun 26;12(18):3288-3290. doi: 10.12998/wjcc.v12.i18.3288.
2
Pioneering role of machine learning in unveiling intensive care unit-acquired weakness.
World J Clin Cases. 2024 May 6;12(13):2157-2159. doi: 10.12998/wjcc.v12.i13.2157.
4
Predicting intensive care unit-acquired weakness: A multilayer perceptron neural network approach.
World J Clin Cases. 2024 Apr 26;12(12):2023-2030. doi: 10.12998/wjcc.v12.i12.2023.
5
Machine learning insights on intensive care unit-acquired weakness.
World J Clin Cases. 2024 Jun 26;12(18):3285-3287. doi: 10.12998/wjcc.v12.i18.3285.
7
Deep Machine Learning Might Aid in Combating Intensive Care Unit-Acquired Weakness.
Cureus. 2024 Apr 24;16(4):e58963. doi: 10.7759/cureus.58963. eCollection 2024 Apr.
8
Development and validation of an intensive care unit acquired weakness prediction model: A cohort study.
Front Med (Lausanne). 2023 Feb 22;10:1122936. doi: 10.3389/fmed.2023.1122936. eCollection 2023.
9
[Intensive care unit-acquired weakness of mechanically ventilated patients: prevalence and risk factors].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2019 Nov;31(11):1351-1356. doi: 10.3760/cma.j.issn.2095-4352.2019.11.008.
10
[Establishment and validation of a risk prediction model for intensive care unit-acquired weakness].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2021 Dec;33(12):1491-1496. doi: 10.3760/cma.j.cn121430-20210513-00707.

本文引用的文献

3
Legacy of intensive care unit-acquired weakness.
Crit Care Med. 2009 Oct;37(10 Suppl):S457-61. doi: 10.1097/CCM.0b013e3181b6f35c.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验