Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA.
Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
Mol Ecol. 2024 Aug;33(15):e17444. doi: 10.1111/mec.17444. Epub 2024 Jul 10.
Speciation generates biodiversity and the mechanisms involved are thought to vary across the tree of life and across environments. For example, well-studied adaptive radiations are thought to be fuelled by divergent ecological selection, but additionally are influenced heavily by biogeographic, genomic and demographic factors. Mechanisms of non-adaptive radiations, producing ecologically cryptic taxa, have been less well-studied but should likewise be influenced by these latter factors. Comparing among contexts can help pinpoint universal mechanisms and outcomes, especially if we integrate biogeographic, ecological and evolutionary processes. We investigate population divergence in the swordtail cricket Laupala cerasina, a wide-spread endemic on Hawai'i Island and one of 38 ecologically cryptic Laupala species. The nine sampled populations show striking population genetic structure at small spatio-temporal scales. The rapid differentiation among populations and species of Laupala shows that neither a specific geographical context nor ecological opportunity are pre-requisites for rapid divergence. Spatio-temporal patterns in population divergence, population size change, and gene flow are aligned with the chronosequence of the four volcanoes on which L. cerasina occurs and reveal the composite effects of geological dynamics and Quaternary climate change on population dynamics. Spatio-temporal patterns in genetic variation along the genome reveal the interplay of genetic and genomic architecture in shaping population divergence. In early phases of divergence, we find elevated differentiation in genomic regions harbouring mating song loci. In later stages of divergence, we find a signature of linked selection that interacts with recombination rate variation. Comparing our findings with recent work on complementary systems supports the conclusion that mostly universal factors influence the speciation process.
物种形成产生了生物多样性,而涉及的机制被认为在生命之树上和不同环境中有所不同。例如,经过充分研究的适应性辐射被认为是由不同的生态选择驱动的,但也受到生物地理、基因组和人口因素的强烈影响。产生生态隐生类群的非适应性辐射的机制研究较少,但同样应该受到这些后一因素的影响。在不同的背景下进行比较可以帮助确定普遍的机制和结果,特别是如果我们整合生物地理、生态和进化过程。我们研究了剑尾蟋蟀 Laupala cerasina 的种群分化,这是一种广泛分布于夏威夷岛的特有物种,也是 38 种生态隐生 Laupala 物种之一。在九个抽样种群中,在小的时空尺度上显示出显著的种群遗传结构。种群之间的快速分化和 Laupala 的物种分化表明,快速分化既不需要特定的地理背景,也不需要生态机会。种群分化、种群大小变化和基因流的时空模式与 L. cerasina 所在的四座火山的年代序列一致,揭示了地质动力学和第四纪气候变化对种群动态的综合影响。沿着基因组的遗传变异的时空模式揭示了遗传和基因组结构在塑造种群分化中的相互作用。在分化的早期阶段,我们发现含有交配歌曲基因座的基因组区域的分化程度升高。在分化的后期阶段,我们发现了与重组率变化相互作用的连锁选择的特征。将我们的发现与最近关于互补系统的工作进行比较,支持了这样的结论,即大多数普遍的因素影响着物种形成过程。