Fukazawa Mana, Miyake Keita, Hoshino Hiroki, Fushimi Keiji, Narikawa Rei
Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan.
Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan.
Plant Cell Physiol. 2025 Feb 28;66(2):193-203. doi: 10.1093/pcp/pcae077.
A novel photoreceptor dualchrome 1 (DUC1), containing a fused structure of cryptochrome and phytochrome, was discovered in the marine green alga Pycnococcus provasolli. The DUC1 phytochrome region (PpDUC1-N) binds to the bilin (linear tetrapyrrole) chromophores, phytochromobilin (PΦB) or phycocyanobilin (PCB), and reversibly photoconverts between the orange-absorbing dark-adapted state and the far-red-absorbing photoproduct state. This contrasts with typical phytochromes, which photoconvert between the red-absorbing dark-adapted and far-red-absorbing photoproduct states. In this study, we examined the molecular mechanism of PpDUC1-N to sense orange light by identifying the chromophore species synthesized by P. provasolli and the amino acid residues within the PpDUC1-N responsible for sensing orange light in the dark-adapted state. We focused on the PcyA homolog of P. provasolli (PpPcyA). Coexpression with the photoreceptors followed by an enzymatic assay revealed that PpPcyA synthesized PCB. Next, we focused on the PpDUC1-N GAF domain responsible for chromophore binding and light sensing. Ten amino acid residues were selected as the mutagenesis target near the chromophore. Replacement of these residues with those conserved in typical phytochromes revealed that three mutations (F290Y/M304S/L353M) resulted in a 23-nm red shift in the dark-adapted state. Finally, we combined these constructs to obtain the PΦB-binding F290Y/M304S/L353M mutant and a 38-nm red shift was observed compared with the PCB-binding wild-type PpDUC1. The binding chromophore species and the key residues near the chromophore contribute to blue-shifted orange light sensing in the dark-adapted state of the PpDUC1-N.
在海洋绿藻原甲藻(Pycnococcus provasolli)中发现了一种新型光感受器双色素1(DUC1),它含有隐花色素和光敏色素的融合结构。DUC1光敏色素区域(PpDUC1-N)与胆色素(线性四吡咯)发色团、藻胆素(PΦB)或藻蓝胆素(PCB)结合,并在吸收橙色光的暗适应状态和吸收远红光的光产物状态之间可逆地光转换。这与典型的光敏色素形成对比,典型光敏色素在吸收红光的暗适应状态和吸收远红光的光产物状态之间进行光转换。在本研究中,我们通过鉴定原甲藻合成的发色团种类以及PpDUC1-N中负责在暗适应状态下感知橙色光的氨基酸残基,研究了PpDUC1-N感知橙色光的分子机制。我们重点研究了原甲藻的PcyA同源物(PpPcyA)。与光感受器共表达并进行酶促测定后发现,PpPcyA合成了PCB。接下来,我们关注负责发色团结合和光感知的PpDUC1-N GAF结构域。在发色团附近选择了10个氨基酸残基作为诱变靶点。用典型光敏色素中保守的残基替换这些残基后发现,三个突变(F290Y/M304S/L353M)导致暗适应状态下出现23纳米的红移。最后,我们将这些构建体组合起来,得到了结合PΦB的F290Y/M304S/L353M突变体,与结合PCB的野生型PpDUC1相比,观察到了38纳米的红移。发色团结合种类和发色团附近的关键残基有助于PpDUC1-N在暗适应状态下实现蓝移橙色光感知。