Payod Renebeth B, Pushkarchuk Aliaxandr L, Michels Dominik L, Lyakhov Dmitry A, Saroka Vasil A
Institute of Mathematical Sciences and Physics, University of the Philippines, Los Baños, Laguna 4031, The Philippines.
Institute of Physical and Organic Chemistry, National Academy of Sciences of Belarus, 13 Surganov Str., Minsk 220072, Belarus.
J Phys Condens Matter. 2024 Jul 25;36(42). doi: 10.1088/1361-648X/ad61ab.
Two approaches are presented here to analyze the absorption resonances between carbynes and cyclo[n]carbons, namely the analytical tight-binding model to calculate the optical selection rules of cumulenic atomic rings and chains and thetime-dependent density functional theory for the optical investigation of polyynic carbon ring and chains. The optical absorption spectra of the carbon ring match that of the finite chain when their eigen energies align following theNring=2Nchain+2rule, which states that the number of atoms in an atomic ringNringis twice the number of atoms on a finite chainNchainwith two additional atoms. Two representative atomic chains are chosen for our numerical calculations, specifically carbynes withN=7and8carbon atoms as optical resonance spectra match to a recently synthesized carbon ring called cyclo[18]carbon. Despite the mismatch in resonance peaks, molecular orbital transitions of both carbynes = 7 and 8 and cyclo[18]carbon reveal a wave function symmetry change from inversion to reflection and vice versa for allowed molecular orbital transitions, which results in electron density redistribution along the polyynic carbyne axis or the cyclo[18]carbon circumference. Our investigation of the correlation of optical absorption peaks between carbynes and cyclo[n]carbons is a step towards enhancing the reliability of allotrope identification in advanced molecular device spectroscopy. Moreover, this work could facilitate the non-invasive, rapid and crucial assessment of these sensitive 1D allotropes by providing accurate descriptions of their electronic and optical properties, particularly in controlled synthesis environments.
本文提出了两种分析卡宾与环[n]碳之间吸收共振的方法,即用于计算累积烯型原子环和链的光学选择规则的解析紧束缚模型,以及用于多炔型碳环和链光学研究的含时密度泛函理论。当碳环的本征能量按照(N_{ring}=2N_{chain}+2)规则对齐时,碳环的光吸收光谱与有限链的光吸收光谱相匹配,该规则表明原子环中的原子数(N_{ring})是有限链上原子数(N_{chain})的两倍再加上两个额外的原子。我们选择了两条具有代表性的原子链进行数值计算,具体为含有7个和8个碳原子的卡宾,因为它们的光学共振光谱与最近合成的一种名为环[18]碳的碳环相匹配。尽管共振峰存在不匹配,但含有7个和8个碳原子的卡宾以及环[18]碳的分子轨道跃迁在允许的分子轨道跃迁中都显示出波函数对称性从反演到反射的变化,反之亦然,这导致电子密度沿着多炔型卡宾轴或环[18]碳的圆周重新分布。我们对卡宾与环[n]碳之间光吸收峰相关性的研究是朝着提高先进分子器件光谱中同素异形体识别可靠性迈出的一步。此外,这项工作可以通过提供对这些敏感的一维同素异形体电子和光学性质的准确描述,促进对它们进行非侵入性、快速且关键地评估,特别是在可控合成环境中。