Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
Bone Res. 2024 Jul 11;12(1):40. doi: 10.1038/s41413-024-00338-4.
Efficient cellular fusion of mononuclear precursors is the prerequisite for the generation of fully functional multinucleated bone-resorbing osteoclasts. However, the exact molecular factors and mechanisms controlling osteoclast fusion remain incompletely understood. Here we identify RANKL-mediated activation of caspase-8 as early key event during osteoclast fusion. Single cell RNA sequencing-based analyses suggested that activation of parts of the apoptotic machinery accompanied the differentiation of osteoclast precursors into mature multinucleated osteoclasts. A subsequent characterization of osteoclast precursors confirmed that RANKL-mediated activation of caspase-8 promoted the non-apoptotic cleavage and activation of downstream effector caspases that translocated to the plasma membrane where they triggered activation of the phospholipid scramblase Xkr8. Xkr8-mediated exposure of phosphatidylserine, in turn, aided cellular fusion of osteoclast precursors and thereby allowed generation of functional multinucleated osteoclast syncytia and initiation of bone resorption. Pharmacological blockage or genetic deletion of caspase-8 accordingly interfered with fusion of osteoclasts and bone resorption resulting in increased bone mass in mice carrying a conditional deletion of caspase-8 in mononuclear osteoclast precursors. These data identify a novel pathway controlling osteoclast biology and bone turnover with the potential to serve as target for therapeutic intervention during diseases characterized by pathologic osteoclast-mediated bone loss. Proposed model of osteoclast fusion regulated by caspase-8 activation and PS exposure. RANK/RANK-L interaction. Activation of procaspase-8 into caspase-8. Caspase-8 activates caspase-3. Active capase-3 cleaves Xkr8. Local PS exposure is induced. Exposed PS is recognized by the fusion partner. FUSION. PS is re-internalized.
单核细胞前体细胞的有效融合是产生完全功能多核破骨细胞的前提。然而,控制破骨细胞融合的确切分子因素和机制仍不完全清楚。在这里,我们确定 RANKL 介导的半胱天冬酶-8 的激活是破骨细胞融合过程中的早期关键事件。基于单细胞 RNA 测序的分析表明,部分凋亡机制的激活伴随着破骨细胞前体细胞向成熟多核破骨细胞的分化。随后对破骨细胞前体细胞的特征分析证实,RANKL 介导的半胱天冬酶-8 的激活促进了下游效应半胱天冬酶的非凋亡裂解和激活,这些效应半胱天冬酶易位到质膜,在质膜上它们触发了磷脂 scramblase Xkr8 的激活。Xkr8 介导的磷脂酰丝氨酸暴露,反过来又有助于破骨细胞前体细胞的细胞融合,从而允许功能性多核破骨细胞合胞体的产生,并启动骨吸收。因此,半胱天冬酶-8 的药理学阻断或基因缺失干扰了破骨细胞的融合和骨吸收,导致携带单核破骨细胞前体细胞条件性缺失半胱天冬酶-8 的小鼠骨量增加。这些数据确定了一条控制破骨细胞生物学和骨转换的新途径,有可能成为以破骨细胞介导的骨丢失为特征的疾病中治疗干预的靶点。受半胱天冬酶-8 激活和 PS 暴露调节的破骨细胞融合模型。RANK/RANK-L 相互作用。前半胱天冬酶-8 激活成半胱天冬酶-8。半胱天冬酶-8 激活半胱天冬酶-3。活性半胱天冬酶-3 切割 Xkr8。局部 PS 暴露被诱导。暴露的 PS 被融合伴侣识别。融合。PS 被再内化。