Suppr超能文献

前瞻性多中心队列研究表明,粪便微生物组成是复发性艰难梭菌感染的更好预测因子,优于临床因素。

Fecal microbiota composition is a better predictor of recurrent Clostridioides difficile infection than clinical factors in a prospective, multicentre cohort study.

机构信息

Department of Medical Microbiology & Infection Control, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands.

出版信息

BMC Infect Dis. 2024 Jul 10;24(1):687. doi: 10.1186/s12879-024-09506-7.

Abstract

INTRODUCTION

Clostridioides difficile infection (CDI) is the most common cause of antibiotic-associated diarrhoea. Fidaxomicin and fecal microbiota transplantation (FMT) are effective, but expensive therapies to treat recurrent CDI (reCDI). Our objective was to develop a prediction model for reCDI based on the gut microbiota composition and clinical characteristics, to identify patients who could benefit from early treatment with fidaxomicin or FMT.

METHODS

Multicentre, prospective, observational study in adult patients diagnosed with a primary episode of CDI. Fecal samples and clinical data were collected prior to, and after 5 days of CDI treatment. Follow-up duration was 8 weeks. Microbiota composition was analysed by IS-pro, a bacterial profiling technique based on phylum- and species-specific differences in the 16-23 S interspace regions of ribosomal DNA. Bayesian additive regression trees (BART) and adaptive group-regularized logistic ridge regression (AGRR) were used to construct prediction models for reCDI.

RESULTS

209 patients were included, of which 25% developed reCDI. Variables related to microbiota composition provided better prediction of reCDI and were preferentially selected over clinical factors in joint prediction models. Bacteroidetes abundance and diversity after start of CDI treatment, and the increase in Proteobacteria diversity relative to baseline, were the most robust predictors of reCDI. The sensitivity and specificity of a BART model including these factors were 95% and 78%, but these dropped to 67% and 62% in out-of-sample prediction.

CONCLUSION

Early microbiota response to CDI treatment is a better predictor of reCDI than clinical prognostic factors, but not yet sufficient enough to predict reCDI in daily practice.

摘要

简介

艰难梭菌感染(CDI)是抗生素相关性腹泻最常见的原因。非达霉素和粪便微生物群移植(FMT)是治疗复发性 CDI(reCDI)的有效但昂贵的疗法。我们的目的是基于肠道微生物群组成和临床特征开发一种 reCDI 预测模型,以确定哪些患者可以从早期非达霉素或 FMT 治疗中获益。

方法

这是一项多中心、前瞻性、观察性研究,纳入了诊断为初次 CDI 的成年患者。在 CDI 治疗前和治疗后 5 天收集粪便样本和临床数据。随访时间为 8 周。使用 IS-pro 分析微生物群组成,这是一种基于核糖体 DNA 16-23S 间隔区种属特异性差异的细菌分析技术。使用贝叶斯加性回归树(BART)和自适应分组正则化逻辑岭回归(AGRR)构建 reCDI 预测模型。

结果

共纳入 209 例患者,其中 25%发生 reCDI。与微生物群组成相关的变量能更好地预测 reCDI,并且在联合预测模型中优先于临床因素被选择。CDI 治疗开始后拟杆菌门丰度和多样性,以及与基线相比变形菌门多样性的增加,是 reCDI 的最可靠预测因素。包含这些因素的 BART 模型的灵敏度和特异性分别为 95%和 78%,但在样本外预测中降至 67%和 62%。

结论

与临床预后因素相比,CDI 治疗早期的微生物群反应是 reCDI 的更好预测因素,但在日常实践中还不够充分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a00d/11238444/c7c7116815e3/12879_2024_9506_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验