Suppr超能文献

使用多模态定量超声和人工智能框架对肝纤维化、炎症和脂肪变性进行同步分级诊断。

Simultaneous grading diagnosis of liver fibrosis, inflammation, and steatosis using multimodal quantitative ultrasound and artificial intelligence framework.

作者信息

Wei Xingyue, Wang Yuanyuan, Wang Lianshuang, Gao Mengze, He Qiong, Zhang Yao, Luo Jianwen

机构信息

School of Biomedical Engineering, Tsinghua University, Beijing, China.

Institute for Precision Medicine, Tsinghua University, Beijing, China.

出版信息

Med Biol Eng Comput. 2024 Jul 11. doi: 10.1007/s11517-024-03159-z.

Abstract

Noninvasive, accurate, and simultaneous grading of liver fibrosis, inflammation, and steatosis is valuable for reversing the progression and improving the prognosis quality of chronic liver diseases (CLDs). In this study, we established an artificial intelligence framework for simultaneous grading diagnosis of these three pathological types through fusing multimodal tissue characterization parameters dug by quantitative ultrasound methods derived from ultrasound radiofrequency signals, B-mode images, shear wave elastography images, and clinical ultrasound systems, using the liver biopsy results as the classification criteria. One hundred forty-two patients diagnosed with CLD were enrolled in this study. The results show that for the classification of fibrosis grade ≥ F1, ≥ F2, ≥ F3, and F4, the highest AUCs were respectively 0.69, 0.82, 0.84, and 0.88 with single clinical indicator alone, and were 0.81, 0.83, 0.89, and 0.91 with the proposed method. For the classification of inflammation grade ≥ A2 and A3, the highest AUCs were respectively 0.66 and 0.76 with single clinical indicator alone and were 0.80 and 0.93 with the proposed method. For the classification of steatosis grade ≥ S1 and ≥ S2, the highest AUCs were respectively 0.71 and 0.90 with single clinical indicator alone and were 0.75 and 0.92 with the proposed method. The proposed method can effectively improve the grading diagnosis performance compared with the present clinical indicators and has potential applications for noninvasive, accurate, and simultaneous diagnosis of CLDs.

摘要

对肝纤维化、炎症和脂肪变性进行无创、准确且同步的分级,对于逆转慢性肝病(CLD)的进展和改善其预后质量具有重要价值。在本研究中,我们通过融合从超声射频信号、B 模式图像、剪切波弹性成像图像以及临床超声系统中提取的多模态组织特征参数,以肝活检结果作为分类标准,建立了一个用于这三种病理类型同步分级诊断的人工智能框架。本研究纳入了 142 例被诊断为 CLD 的患者。结果表明,对于纤维化分级≥F1、≥F2、≥F3 和 F4 的分类,仅使用单一临床指标时,最高 AUC 分别为 0.69、0.82、0.84 和 0.88,而使用所提出的方法时分别为 0.81、0.83、0.89 和 0.91。对于炎症分级≥A2 和 A3 的分类,仅使用单一临床指标时,最高 AUC 分别为 0.66 和 0.76,而使用所提出的方法时分别为 0.80 和 0.93。对于脂肪变性分级≥S1 和≥S2 的分类,仅使用单一临床指标时,最高 AUC 分别为 0.71 和 0.90,而使用所提出的方法时分别为 0.75 和 0.92。与目前的临床指标相比,所提出的方法能够有效提高分级诊断性能,在 CLD 的无创、准确且同步诊断方面具有潜在应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验