Suppr超能文献

高效镍掺杂木质素碳点作为荧光和智能手机辅助传感平台用于顺序检测六价铬和抗坏血酸。

High-efficient nickel-doped lignin carbon dots as a fluorescent and smartphone-assisted sensing platform for sequential detection of Cr(VI) and ascorbic acid.

机构信息

Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.

College of Food Chemistry and Engineering, Yangzhou University, Yangzhou 225001, China.

出版信息

Int J Biol Macromol. 2024 Aug;274(Pt 2):133790. doi: 10.1016/j.ijbiomac.2024.133790. Epub 2024 Jul 9.

Abstract

Using lignin as a raw material to prepare fluorescent nanomaterials represents a significant pathway toward the high-value utilization of waste biomass. In this study, Ni-doped lignin carbon dots (Ni-LCDs) were rapidly synthesized with a yield of 63.22 % and a quantum yield of 8.25 % using a green and simple hydrothermal method. Exploiting the inner filter effect (IFE), Cr(VI) effectively quenched the fluorescence of the Ni-LCDs, while the potent reducing agent ascorbic acid (AA) restored the quenched fluorescence, thus establishing a highly sensitive fluorescence switch sensor platform for the sequential detection of Cr(VI) and AA. Importantly, the integration of a smartphone facilitated the portability of Cr(VI) and AA detection, enabling on-site, in-situ, and real-time monitoring. Ultimately, the developed fluorescence and smartphone-assisted sensing platform was successfully applied to detect Cr(VI) in actual water samples and AA in various fruits. This study not only presents an efficient method for the conversion and utilization of waste lignin but also broadens the application scope of the CDs in the field of smart sensors.

摘要

以木质素为原料制备荧光纳米材料,代表了一种高附加值利用废生物质的重要途径。本研究采用绿色简单的水热法,以 63.22%的产率和 8.25%的量子产率快速合成了镍掺杂木质素碳点(Ni-LCDs)。利用内滤效应(IFE),Cr(VI)有效猝灭了 Ni-LCDs 的荧光,而强还原剂抗坏血酸(AA)则恢复了猝灭的荧光,从而建立了一个用于顺序检测 Cr(VI)和 AA 的高灵敏荧光开关传感器平台。重要的是,智能手机的集成提高了 Cr(VI)和 AA 检测的便携性,实现了现场、原位和实时监测。最终,开发的荧光和智能手机辅助传感平台成功应用于实际水样中 Cr(VI)的检测和各种水果中 AA 的检测。本研究不仅为废木质素的转化和利用提供了一种有效方法,而且拓宽了 CDs 在智能传感器领域的应用范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验