Suppr超能文献

通过综合生物信息学分析探索肥厚型心肌病生物标志物:发现新型诊断候选物

Exploring Hypertrophic Cardiomyopathy Biomarkers through Integrated Bioinformatics Analysis: Uncovering Novel Diagnostic Candidates.

作者信息

Li Guanmou, Lin Dongqun, Fan Xiaoping, Peng Bo

机构信息

Zhujiang Hospital of Southern Medical University, Guangzhou 510120, Guangdong, China.

Department of Cardiovascular Surgery Guangdong Provincial Hospital of Chinese Medicine The Second Affiliated Hospital of Guangzhou University of Chinese Medicine The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China.

出版信息

Cardiol Res Pract. 2024 Jul 4;2024:4639334. doi: 10.1155/2024/4639334. eCollection 2024.

Abstract

HCM is a heterogeneous monogenic cardiac disease that can lead to arrhythmia, heart failure, and atrial fibrillation. This study aims to identify biomarkers that have a positive impact on the treatment, diagnosis, and prediction of HCM through bioinformatics analysis. We selected the GSE36961 and GSE180313 datasets from the Gene Expression Omnibus (GEO) database for differential analysis. GSE36961 generated 6 modules through weighted gene co-expression network analysis (WGCNA), with the green and grey modules showing the highest positive correlation with HCM (green module: cor = 0.88, = 2 - 48; grey module: cor = 0.78, = 4 - 31). GSE180313 generated 17 modules through WGCNA, with the turquoise module exhibiting the highest positive correlation with HCM (turquoise module: cor = 0.92, = 6 - 09). We conducted GO and KEGG pathway analysis on the intersection genes of the selected modules from GSE36961 and GSE180313 and intersected their GO enriched pathways with the GO enriched pathways of endothelial cell subtypes calculated after clustering single-cell data GSE181764, resulting in 383 genes on the enriched pathways. Subsequently, we used LASSO prediction on these 383 genes and identified RTN4, COL4A1, and IER3 as key genes involved in the occurrence and development of HCM. The expression levels of these genes were validated in the GSE68316 and GSE32453 datasets. In conclusion, RTN4, COL4A1, and IER3 are potential biomarkers of HCM, and protein degradation, mechanical stress, and hypoxia may be associated with the occurrence and development of HCM.

摘要

肥厚型心肌病(HCM)是一种异质性单基因心脏病,可导致心律失常、心力衰竭和心房颤动。本研究旨在通过生物信息学分析鉴定对HCM的治疗、诊断和预测有积极影响的生物标志物。我们从基因表达综合数据库(GEO)中选择了GSE36961和GSE180313数据集进行差异分析。GSE36961通过加权基因共表达网络分析(WGCNA)生成了6个模块,其中绿色和灰色模块与HCM的正相关性最高(绿色模块:cor = 0.88,P = 2 - 48;灰色模块:cor = 0.78,P = 4 - 31)。GSE180313通过WGCNA生成了17个模块,其中绿松石色模块与HCM的正相关性最高(绿松石色模块:cor = 0.92,P = 6 - 09)。我们对GSE36961和GSE180313中选定模块的交集基因进行了GO和KEGG通路分析,并将其GO富集通路与单细胞数据GSE181764聚类后计算的内皮细胞亚型的GO富集通路进行交集,在富集通路上得到383个基因。随后,我们对这383个基因进行LASSO预测,确定RTN4、COL4A1和IER3为参与HCM发生发展的关键基因。这些基因的表达水平在GSE68316和GSE32453数据集中得到验证。总之,RTN4、COL4A1和IER3是HCM的潜在生物标志物,蛋白质降解、机械应激和缺氧可能与HCM的发生发展有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b14/11239233/770f0d3d0f43/CRP2024-4639334.001.jpg

相似文献

1
Exploring Hypertrophic Cardiomyopathy Biomarkers through Integrated Bioinformatics Analysis: Uncovering Novel Diagnostic Candidates.
Cardiol Res Pract. 2024 Jul 4;2024:4639334. doi: 10.1155/2024/4639334. eCollection 2024.
3
Identification of the Immune Status of Hypertrophic Cardiomyopathy by Integrated Analysis of Bulk- and Single-Cell RNA Sequencing Data.
Comput Math Methods Med. 2022 Oct 4;2022:7153491. doi: 10.1155/2022/7153491. eCollection 2022.
5
Identification of biomarkers correlated with hypertrophic cardiomyopathy with co-expression analysis.
J Cell Physiol. 2019 Dec;234(12):21999-22008. doi: 10.1002/jcp.28762. Epub 2019 May 6.
6
Identification of Underlying Hub Genes Associated with Hypertrophic Cardiomyopathy by Integrated Bioinformatics Analysis.
Pharmgenomics Pers Med. 2021 Jul 12;14:823-837. doi: 10.2147/PGPM.S314880. eCollection 2021.
8
9
Transcriptomics data integration and analysis to uncover hallmark genes in hypertrophic cardiomyopathy.
Am J Transl Res. 2024 Feb 15;16(2):637-653. doi: 10.62347/AXOY3338. eCollection 2024.
10
Dysregulation and imbalance of innate and adaptive immunity are involved in the cardiomyopathy progression.
Front Cardiovasc Med. 2022 Sep 6;9:973279. doi: 10.3389/fcvm.2022.973279. eCollection 2022.

本文引用的文献

1
Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform.
Imeta. 2022 Jul 8;1(3):e36. doi: 10.1002/imt2.36. eCollection 2022 Sep.
2
Inherited Arrhythmias in the Pediatric Population: An Updated Overview.
Medicina (Kaunas). 2024 Jan 3;60(1):94. doi: 10.3390/medicina60010094.
3
Diagnosis and Evaluation of Hypertrophic Cardiomyopathy: JACC State-of-the-Art Review.
J Am Coll Cardiol. 2022 Feb 1;79(4):372-389. doi: 10.1016/j.jacc.2021.12.002.
4
MiR-590-5p inhibits pathological hypertrophy mediated heart failure by targeting RTN4.
J Mol Histol. 2021 Oct;52(5):955-964. doi: 10.1007/s10735-021-10009-x. Epub 2021 Aug 18.
5
Novel COL4A1-VEGFD gene fusion in myofibroma.
J Cell Mol Med. 2021 May;25(9):4387-4394. doi: 10.1111/jcmm.16502. Epub 2021 Apr 8.
6
Regulatory Roles of Circular RNAs in Coronary Artery Disease.
Mol Ther Nucleic Acids. 2020 Sep 4;21:172-179. doi: 10.1016/j.omtn.2020.05.024. Epub 2020 May 23.
7
Genetic Dissection of Hypertrophic Cardiomyopathy with Myocardial RNA-Seq.
Int J Mol Sci. 2020 Apr 25;21(9):3040. doi: 10.3390/ijms21093040.
8
RNA-binding proteins RBM20 and PTBP1 regulate the alternative splicing of FHOD3.
Int J Biochem Cell Biol. 2019 Jan;106:74-83. doi: 10.1016/j.biocel.2018.11.009. Epub 2018 Nov 20.
9
RTN4 Knockdown Dysregulates the AKT Pathway, Destabilizes the Cytoskeleton, and Enhances Paclitaxel-Induced Cytotoxicity in Cancers.
Mol Ther. 2018 Aug 1;26(8):2019-2033. doi: 10.1016/j.ymthe.2018.05.026. Epub 2018 Jun 30.
10
Gene therapy strategies in the treatment of hypertrophic cardiomyopathy.
Pflugers Arch. 2019 May;471(5):807-815. doi: 10.1007/s00424-018-2173-5. Epub 2018 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验