Suppr超能文献

阿兹夫定在中国 COVID-19 患者中的疗效和安全性:一项观察性研究的荟萃分析。

Efficacy and Safety of Azvudine in Patients With COVID-19 in China: A Meta-Analysis of Observational Studies.

机构信息

Pharmacy Department, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China.

Medical Device Monitoring and Evaluation Department, National Center for ADR Monitoring, Beijing, China.

出版信息

Clin Respir J. 2024 Jul;18(7):e13798. doi: 10.1111/crj.13798.

Abstract

BACKGROUND

Azvudine (FNC) is a novel small molecule antiviral drug for treating COVID-19 that is available only on the Chinese market. Despite being recommended for treating COVID-19 by the Chinese guidelines, its efficacy and safety are still unclear. This study aimed to evaluate the protective effect of FNC on COVID-19 outcomes and its safety.

METHODS

We followed the PRISMA 2020 guidelines and searched the PubMed, Embase, Web of Science, Scopus, and China National Knowledge Infrastructure (CNKI) databases to evaluate studies on the effectiveness of FNC in treating COVID-19 in China, focusing on mortality and overall outcomes. Additionally, its impact on the length of hospital stay (LOHS), time to first nucleic acid negative conversion (T-FNANC), and adverse events was evaluated. The inclusion criterion was that the studies were published from July 2021 to April 10, 2024. This study uses the ROBINS-I tool to assess bias risk and employs the GRADE approach to evaluate the certainty of the evidence.

RESULTS

The meta-analysis included 24 retrospective studies involving a total of 11 830 patients. Low-certainty evidence revealed no significant difference in mortality (OR = 0.91, 95% CI: 0.76-1.08) or LOHS (WMD = -0.24, 95% CI: -0.83 to 0.35) between FNC and Paxlovid in COVID-19 patients. Low-certainty evidence shows that the T-FNANC was longer (WMD = 1.95, 95% CI: 0.36-3.53). Compared with the Paxlovid group, low-certainty evidence shows the FNC group exhibited a worse composite outcome (OR = 0.77, 95% CI: 0.63-0.95) and fewer adverse events (OR = 0.63, 95% CI: 0.46-0.85). Compared with supportive treatment, low certainty shows FNC significantly reduced the mortality rate in COVID-19 patients (OR = 0.61, 95% CI: 0.51-0.74) and decreased the composite outcome (OR = 0.67, 95% CI: 0.50-0.91), and very low certainty evidence shows significantly decreased the T-FNANC (WMD = -4.62, 95% CI: -8.08 to -1.15). However, in very low certainty, there was no significant difference in LOHS (WMD = -0.70, 95% CI: -3.32 to 1.91) or adverse events (OR = 1.97, 95% CI: 0.48-8.17).

CONCLUSIONS

FNC appears to be a safe and potentially effective treatment for COVID-19 in China, but further research with larger, high-quality studies is necessary to confirm these findings. Due to the certainty of the evidence and the specific context of the studies conducted in China, caution should be exercised when considering whether the results are applicable worldwide.

TRIAL REGISTRATION

PROSPERO number: CRD42024520565.

摘要

背景

阿兹夫定(FNC)是一种新型的小分子抗病毒药物,用于治疗 COVID-19,仅在中国市场有售。尽管中国指南推荐用于治疗 COVID-19,但它的疗效和安全性仍不清楚。本研究旨在评估 FNC 对 COVID-19 结局的保护作用及其安全性。

方法

我们遵循 PRISMA 2020 指南,检索了 PubMed、Embase、Web of Science、Scopus 和中国国家知识基础设施(CNKI)数据库,以评估 FNC 在中国治疗 COVID-19 的有效性研究,重点是死亡率和总体结局。此外,还评估了其对住院时间(LOHS)、首次核酸转阴时间(T-FNANC)和不良事件的影响。纳入标准是研究发表时间为 2021 年 7 月至 2024 年 4 月 10 日。本研究使用 ROBINS-I 工具评估偏倚风险,并采用 GRADE 方法评估证据的确定性。

结果

荟萃分析纳入了 24 项回顾性研究,共涉及 11830 名患者。低确定性证据表明,FNC 与帕罗韦德在 COVID-19 患者中死亡率(OR=0.91,95%CI:0.76-1.08)或 LOHS(WMD=-0.24,95%CI:-0.83 至 0.35)无显著差异。低确定性证据表明,T-FNANC 更长(WMD=1.95,95%CI:0.36-3.53)。与帕罗韦德组相比,低确定性证据表明 FNC 组复合结局较差(OR=0.77,95%CI:0.63-0.95),不良事件较少(OR=0.63,95%CI:0.46-0.85)。与支持性治疗相比,低确定性证据表明 FNC 可显著降低 COVID-19 患者的死亡率(OR=0.61,95%CI:0.51-0.74)和复合结局(OR=0.67,95%CI:0.50-0.91),而极低确定性证据表明 T-FNANC 显著降低(WMD=-4.62,95%CI:-8.08 至-1.15)。然而,在极低确定性中,LOHS(WMD=-0.70,95%CI:-3.32 至 1.91)或不良事件(OR=1.97,95%CI:0.48-8.17)无显著差异。

结论

FNC 似乎是一种安全且潜在有效的 COVID-19 治疗方法,但需要进一步开展更大规模、高质量的研究来证实这些发现。由于证据的确定性和中国开展研究的具体情况,在考虑结果是否适用于全球时应谨慎。

试验注册

PROSPERO 编号:CRD42024520565。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bfb/11240111/52022a7476cc/CRJ-18-e13798-g012.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验