Suppr超能文献

基于动态神经场的计算高效且鲁棒的逼近感知模型。

A computationally efficient and robust looming perception model based on dynamic neural field.

机构信息

Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou University, Guangzhou, 510006, China.

出版信息

Neural Netw. 2024 Nov;179:106502. doi: 10.1016/j.neunet.2024.106502. Epub 2024 Jul 3.

Abstract

There are primarily two classes of bio-inspired looming perception visual systems. The first class employs hierarchical neural networks inspired by well-acknowledged anatomical pathways responsible for looming perception, and the second maps nonlinear relationships between physical stimulus attributes and neuronal activity. However, even with multi-layered structures, the former class is sometimes fragile in looming selectivity, i.e., the ability to well discriminate between approaching and other categories of movements. While the latter class leaves qualms regarding how to encode visual movements to indicate physical attributes like angular velocity/size. Beyond those, we propose a novel looming perception model based on dynamic neural field (DNF). The DNF is a brain-inspired framework that incorporates both lateral excitation and inhibition within the field through instant feedback, it could be an easily-built model to fulfill the looming sensitivity observed in biological visual systems. To achieve our target of looming perception with computational efficiency, we introduce a single-field DNF with adaptive lateral interactions and dynamic activation threshold. The former mechanism creates antagonism to translating motion, and the latter suppresses excitation during receding. Accordingly, the proposed model exhibits the strongest response to moving objects signaling approaching over other types of external stimuli. The effectiveness of the proposed model is supported by relevant mathematical analysis and ablation study. The computational efficiency and robustness of the model are verified through systematic experiments including on-line collision-detection tasks in micro-mobile robots, at success rate of 93% compared with state-of-the-art methods. The results demonstrate its superiority over the model-based methods concerning looming perception.

摘要

主要有两类仿生逼近感知视觉系统。第一类采用受公认的负责逼近感知的解剖途径启发的分层神经网络,第二类则映射物理刺激属性和神经元活动之间的非线性关系。然而,即使具有多层次结构,前一类在逼近选择性方面有时也很脆弱,即能够很好地区分逼近和其他类别的运动的能力。而第二类则让人怀疑如何对视觉运动进行编码,以指示角速度/大小等物理属性。除此之外,我们还提出了一种基于动态神经场(DNF)的新型逼近感知模型。DNF 是一种脑启发框架,通过即时反馈在该场中同时包含侧向兴奋和抑制,它可以是一个易于构建的模型,以实现生物视觉系统中观察到的逼近敏感性。为了以计算效率实现逼近感知目标,我们引入了具有自适应侧向相互作用和动态激活阈值的单场 DNF。前一种机制产生了对抗运动的作用,而后者在后退时抑制兴奋。因此,所提出的模型对发出逼近信号的运动物体表现出最强的响应,而不是其他类型的外部刺激。相关的数学分析和消融研究支持了所提出模型的有效性。通过包括微移动机器人在线碰撞检测任务在内的系统实验,验证了该模型的计算效率和鲁棒性,与最先进的方法相比,成功率达到 93%。结果表明,该模型在逼近感知方面优于基于模型的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验