García-Ruiz Pablo, Romero-Ramirez Francisco J, Muñoz-Salinas Rafael, Marín-Jiménez Manuel J, Medina-Carnicer Rafael
Departamento de Informática y Análisis Numérico, Edificio Einstein, Campus de Rabanales, Universidad de Coŕdoba, 14071 Córdoba, Spain.
Departamento de Teoría de la Señal y Comunicaciones y Sistemas Telemáticos y Computación, Campus de Fuenlabrada, Universidad Rey Juan Carlos, 28942 Fuenlabrada, Spain.
Sensors (Basel). 2024 Jul 2;24(13):4303. doi: 10.3390/s24134303.
Estimating the pose of a large set of fixed indoor cameras is a requirement for certain applications in augmented reality, autonomous navigation, video surveillance, and logistics. However, accurately mapping the positions of these cameras remains an unsolved problem. While providing partial solutions, existing alternatives are limited by their dependence on distinct environmental features, the requirement for large overlapping camera views, and specific conditions. This paper introduces a novel approach to estimating the pose of a large set of cameras using a small subset of fiducial markers printed on regular pieces of paper. By placing the markers in areas visible to multiple cameras, we can obtain an initial estimation of the pair-wise spatial relationship between them. The markers can be moved throughout the environment to obtain the relationship between all cameras, thus creating a graph connecting all cameras. In the final step, our method performs a full optimization, minimizing the reprojection errors of the observed markers and enforcing physical constraints, such as camera and marker coplanarity and control points. We validated our approach using novel artificial and real datasets with varying levels of complexity. Our experiments demonstrated superior performance over existing state-of-the-art techniques and increased effectiveness in real-world applications. Accompanying this paper, we provide the research community with access to our code, tutorials, and an application framework to support the deployment of our methodology.
估计大量固定室内摄像头的位姿是增强现实、自主导航、视频监控和物流等某些应用的一项要求。然而,准确映射这些摄像头的位置仍然是一个未解决的问题。虽然现有方法提供了部分解决方案,但它们受到依赖独特环境特征、需要大量重叠摄像头视图以及特定条件的限制。本文介绍了一种新颖的方法,该方法使用打印在普通纸张上的一小部分基准标记来估计大量摄像头的位姿。通过将标记放置在多个摄像头可见的区域,我们可以获得它们之间成对空间关系的初始估计。标记可以在整个环境中移动以获得所有摄像头之间的关系,从而创建一个连接所有摄像头的图。在最后一步中,我们的方法进行全面优化,最小化观察到的标记的重投影误差并强制执行物理约束,如摄像头和标记的共面性以及控制点。我们使用具有不同复杂程度的新颖人工数据集和真实数据集验证了我们的方法。我们的实验表明,与现有最先进技术相比,我们的方法具有卓越的性能,并且在实际应用中具有更高的有效性。随本文一起,我们为研究社区提供了访问我们的代码、教程和应用框架的途径,以支持我们方法的部署。