Suppr超能文献

声学舒适度预测:整合来自无线声学传感器网络的声音事件检测和噪声水平

Acoustic Comfort Prediction: Integrating Sound Event Detection and Noise Levels from a Wireless Acoustic Sensor Network.

作者信息

Bonet-Solà Daniel, Vidaña-Vila Ester, Alsina-Pagès Rosa Ma

机构信息

HER-Human-Environment Research, La Salle Campus Barcelona-Universitat Ramon Llull, Sant Joan de la Salle, 42, 08022 Barcelona, Spain.

出版信息

Sensors (Basel). 2024 Jul 7;24(13):4400. doi: 10.3390/s24134400.

Abstract

There is an increasing interest in accurately evaluating urban soundscapes to reflect citizens' subjective perceptions of acoustic comfort. Various indices have been proposed in the literature to achieve this purpose. However, many of these methods necessitate specialized equipment or extensive data collection. This study introduces an enhanced predictor for dwelling acoustic comfort, utilizing cost-effective data consisting of a 30-s audio clip and location information. The proposed predictor incorporates two rating systems: a binary evaluation and an acoustic comfort index called ACI. The training and evaluation data are obtained from the "Sons al Balcó" citizen science project. To characterize the sound events, gammatone cepstral coefficients are used for automatic sound event detection with a convolutional neural network. To enhance the predictor's performance, this study proposes incorporating objective noise levels from public IoT-based wireless acoustic sensor networks, particularly in densely populated areas like Barcelona. The results indicate that adding noise levels from a public network successfully enhances the accuracy of the acoustic comfort prediction for both rating systems, reaching up to 85% accuracy.

摘要

准确评估城市声景以反映市民对声学舒适度的主观感受,这一兴趣日益浓厚。文献中已提出各种指标来实现这一目的。然而,这些方法中的许多都需要专门设备或大量数据收集。本研究引入了一种用于住宅声学舒适度的增强预测器,利用由30秒音频片段和位置信息组成的经济高效的数据。所提出的预测器包含两个评级系统:二元评估和一个称为ACI的声学舒适度指数。训练和评估数据来自 “Sons al Balcó” 公民科学项目。为了表征声音事件,使用伽马通倒谱系数通过卷积神经网络进行自动声音事件检测。为了提高预测器的性能,本研究建议纳入基于公共物联网的无线声学传感器网络的客观噪声水平,特别是在像巴塞罗那这样人口密集的地区。结果表明,添加公共网络的噪声水平成功提高了两个评级系统的声学舒适度预测准确性,准确率高达85%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27a3/11244582/ec7e34c5d381/sensors-24-04400-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验